Universal Hash Functions are Not so Universal

or why efficient provable security without any assumption may
sometimes be too good to be true

Bart Preneel

Katholieke Universiteit Leuven — COSIC
bartDOTpreneel (AT)esatD0TkuleuvenDOTbe
http://homes.esat.kuleuven.be/~preneel

joint work with Helena Handschuh, Spansion

January 2008

Outline

definitions
attack principles

application to some examples

oo

concluding remarks

MAC Algorithm

Where dips the rocky
highland of Sleuth Wood
in the lake, There lies
a leafy island where
flapping herons wake

the drowsy water-rats;
there we've hid our
faery vats, full of berries
and of reddest stolen
cherries. Come away, 0O

human child! To the

l

MAC

| 239215682364 |

Where dips the rocky
highland of Sleuth Wood
in the lake, There lies
a leafy island where
flapping herons wake
the drowsy water-rats;
there we've hid our
faery vats, full of berries
and of reddest stolen
cherries. Come away, 0O
human child! To the

l

MAC

| 239215682364 |

| 239215682364 | = 7

MAC: definition

e Key generation algorithm
e MAC generation algorithm: stateful, can be randomized
e MAC verification algorithm: memoryless, deterministic

A MAC is (e t,q,4',¢", L) secure if, an adversary who does not know
K, and

e can spend time ¢ (operations),

e can obtain the MAC for g texts of his choice,

e can observe the MAC for ¢ texts (not of his choice),

e and can obtain the result of ¢” verification queries on text-MAC
pairs of his choice.

(each text of length L),

cannot produce an existential forgery with probability of success larger
than e.

Cryptanalysis

key length: k bits, MAC length m bits; internal memory n bits
notation: work — known texts — chosen texts — on-line verifications

key search: [2%,k/m,0,0] or [2%,0,0,2%] or
[22K/3,0, k/m, 0] with 2% offline work

guess MAC: [0,0,0,2™] or [2%,0,0,2*] (but not verifiable)

birthday forgery for iterated MAC algorithms with n-bit int. memory:
[0, 27/2 _min(2n/2 2n—m) Q]

shortcut attacks: e.g., RFC 1828 (envelope MAC), ANSI Retail MAC

Information-theoretic authentication

authentication codes (AC)/universal hash functions
[1970s (Zobrist/Simmons/Carter-Wegman)]

e advantages

— provably secure: only combinatorial
— extremely fast (10-15 times faster than AES/HMACQC)

— parallelizable and incremental

e disadvantages

— use key only once
— sometimes very large keys

— security level in bits against forgery is at most half the key size

Information-theoretic authentication

[Black-Halevi-Krawczyk-Krovetz-Rogaway99]

[...] “since the combinatorial property of the universal hash-function
family is mathematically proven (making no cryptographic hardness
assumptions), it needs no “over-design” or “safety margin” the way
a cryptographic primitive would. Quite the opposite: the [UMAC]
hash-function family might as well be the fastest, simplest thing that
one can prove universal.”

Example: polynomial authentication code

(Change of notation: k is key rather than key size in bits)

o key k', k € GF(2")
e split =z into x1, x5, ..., x¢, with x;, € GF(2")

e hotel =1t -n

t
g@) =K+ =k
=1

Pr(success of forgery after seeing 1 text/MAC pair) = (¢/n)/2" =t/2"

In practice: value k£ can be reused

Step 1: Compress

family of functions g5 : A — B with a =|A| and b =|B|.
B,x an Abelian group
Let ¢ be any positive real number.

g IS an e-almost universal class (or e — AU class) G of hash functions
if Vo, 2’ £ A

Prign(@) = gr(a)} <e.

g 1S an e-almost x universal class (or e-AxU class) G of hash functions
if Ve, =22 € A and VA € B

Fl)cr {gk(w) = gr.(2') % A} <e.

Step 1: Compress (2)

functions that are e-AU

o gi(z) =>"_, =;- k' with k, z; € GF(2") or GF(p)

functions that are e-AxU

ge(z) =3 0_, = - k' with k, x; € GF(2") or GF(p)

MMH: g.(x) = (Zzzl T - kz) mod p
z;, ki, € Zo» and p = 232 4+ 15 (inner sum mod 2°%*) [Halevi-Krawczyk97]

NMH: g.(z) = (fol (2i-1 + k2i—1) - (z2; + in)) mod p
z;, ki € Zo» and p = 232 4+ 15 [Wegman-Carter81 and Halevi-Krawczyk97]

NH: gi(z) = (fol ((z2i—1 + k2i—1) mod 2%) - ((x2; + k2;) mod 2“’)) mod 22w
x;, k; € ZLiow [BHKKR99]

WH: gi(z) = (fol (2i-1 + k2i-1) - (z2; + kzi)w(t/Q_i)w) mod p(x)
x;, ki € GF(2¥) (polynomials) [Kaps-Yiksel-Sunar04]

10

Step 2: Replace addition k'+
pseudorandom function family f. ~» computational security
Option 1: MACk||k/(aj) = fk/(gk(w)) with g e-AU

Option 2: I\/IACka/(a:) = fir(n) x gi(z) with g e-AxU
need nonce but better security

Option 3: I\/IACka/(a:) = fir(n||gr(x)) with g e-AU
need nonce and larger input of f

11

Observations on universal hash functions for MAC

1. reuse of k£ is common in practice, in particular if k is large

2. nonce n is supposed to be unique; what if it isn't?

e nonce is always used twice (generation/verification)
e nonce reuse for verification (e.g., if random numbers)

e nonce reuse for MAC generation more problematic

3. weak keys: Vx,z',2’ # = Prp{gip(z) = gp(2’) x A} < e does not
imply that Vk Pr, ./ {gp(z) = gr(x") x A} ~ 1/|B|. For some keys k

Prigp(2) = gz(2") x A} > 1/|B]

T,T

4. simple combinatorial scheme: partial knowledge of £k may be
devastating (e.g., verification by leaking first two key bytes)

5. messages of special form reduce hash value to subspace

12

Related Work

[Coppersmith96] Finding a small root of a bivariate integer equation; factoring with
high bits known.

[Bellare-Goldwasser97] Verifiable partial key escrow

[McGrew-Fluhrer05] Multiple forgery attacks
[Preneel-vanOorschot-Knudsen96] Key recovery attacks on ANSI retail MAC
[Blackburn-Paterson04] Cryptanalysis of a MAC due to Cary and Venkatesan

[Black-Cochran 06] Focus on reforgeability

UMAC RFC 4418 contains warnings:

e be careful if too many wrong MAC values

e ‘‘once an attempted forgery is successful, it is possible, in principle, that sub-
sequent messages under this key may be easily forged. This is important to
understand in gauging the severity of a successful forgery, even though no
such attack on UMAC is known to date.”

Even two appendices full of warnings for GCM NIST SP 800-38D

13

Polynomial hash
grp(z) =Xt ;- K with k, z; € GF(2")

GCM NIST SP-800 38-D:
e Option 2: MACka/(w) = trunc, (AESk/(n) D gr(x))
o k = AES,,(000...00)

trivial weak key: k = 0 (extremely unlikely)

trivial to verify a guess for k, even if we do not know £’ (ok for GCM)
if order of k divides [< t: swap of two blocks leaves gi(x) unchanged
[Joux06] attack on GCM (nonce reuse by sender):

compute MACka/(m) S, MACka/(a}/) = gk(m) D gk(a:’) = g;;(:l},ml)
k is one of the t roots of the polynomial g;;

14

Polynomial hash (2)

Joux: “replacing the counter encryption for MACs by the classical
encryption with the block cipher usually used with Wegman-Carter
MACs seems a safe option.”

Variant on Joux attack that works even for Option 1 or 3
(more expensive, same cost as forgery, but no nonce reuse):
e Obtain 1 MAC value for a text x of your choice

e choose z’ such that the polynomial with coefficients from x — «'
has t distinct roots (each time)

e perform a MAC verification query for «/

e after 2™/t trials you know that k£ is one of t values

e perform another ¢t MAC verification queries to find out which one
of the ¢

easy to take into account any information you may have on k.
15

Polynomial hash (3)

special message attack [Ferguson05]

z; = 0 except if i = 27 for some j: gp(z) = Zé:o Toj - k2’

squaring is a linear operation in GF(2™)
hence we can write the bits of the hash as follows:

g@1=) wulixl - klux]

1k,] %, Uk

choose z,z’ such that truncs(gi(z)) = truncs(gr(z)) (1 < s < 1),
independent of the value of k

submit z’ for verification (same nonce); success prob. 1/27—%

collect r - 2775 messages (same nonce!) resulting in r forgeries;
each forgery yields 7 — s linear equations in the key bits.

response by NIST: be careful with wrong MAC values; no error messages

16

Polynomial hash (4)

variant of Ferguson’s attack
extends to Option 1 and 3 (but nonce reuse for Option 3)

e Same special messages

e guess the linear combination of s (1 < s < n) bits of the key k,
we can generate a set of A message for which the hash result is
restricted to a subspace of size 2",

e collect A = 2(n=5)/2+1 messages (same nonce!) resulting in 2 col-

lisions; each collision yields n — s linear equations for the remaining
n — s key bits.

example: n =64, s =24, n— s = 40
221 messages yield 2 collisons, which gives 80 linear equations in the
remaining 40 key bits.

17

Bucket hashing with short key [Johansson97]

r t

gr(x) = Z Z Tij - k; with z;; € GF(2), k; € GF(2")
j=1i=1

input size: m = r -t bits; key size: r-n bits, e =t/2"

weak keys: if k; = 0, gi(z) independent of t message bits (prob. 27).
fraction of weak keys ~ r/2"

simple key recovery more complex as coefficients are bits.

still easy to test an n-bit key value k;,: make a modification to the
values x;;, only (but kj« is only a very small part of a large key).

example: n =40, t =512, r = 16 (4 rows of 1024 buckets)
input length = m = 213 bits, key size = 640 bits, output = 40 bits,
e = 231

18

Bucket hashing with short key with nonce reuse (sender)

gr(x) = Z Z Tij - i- with z;; € GF(2), k; € GF(2")
j=1 1=1

special message attack

e set z;; = 0 except for « a power of 2 less than ¢.

e then gi(x)[.] = Zz’*,j*,u*,v* Tise[J%] - Kus[v*]

e collect 2(nt1)/2 /- messages (same nonce!) resulting in r colli-
sions; each collision yields n linear equations for the key bits.

example: n =40, t =512, r = 16
223 messages yield 32 collisions, which gives 1280 linear equations in
the 640 key bits.

19

MMH [Halevi-Krawczyk97]

gp(z) = (Xl @ k;) mod p
i, ki, € Zozo and p =232 4+ 15 (inner sum mod 2°%)

attacks (consider t = 2):

e ki = ko = 0 (trivial): all messages map to O.

e assume k1 = a - kp mod 2% for a € Z,32; then g (x) unchanged if
one replaces (x1,22) by (24, (x2 + (z1 — #}) - &) mod 2°%)

e recover 2 key words with 2. 232 verification queries

e casy to exploit partial key information x1k1 + zoko = 2l k1 + zHko

20

Square Hash [Etzel-Patel-Ramzan99]
gr(x) = 275:1 (z; + ki)z mod p with x;, k;, € Zow

weak keys (consider ¢t = 2):

e k1 = ko mod p: message with 1 and x> swapped collide

e confirm guess for any key word (w bits) with one verification query:
change z; into z; = (—2k; — x;) mod p
easy to take into account any information you may have on k;

preclude 2nd attack by z; < p/2

21

NH — UMAC [BHKKR99] — VMAC — WMAC

t/2

gr(@) = | Y (w21 + koi—1) mod 2¥) - ((z2; + ko;) mod 2%) | mod 22¥,
i=1
L, ki - Zzw

o if ((3327;_1 -+ kgi_l) mod 2w) = 0, gk(a:) is independent of xoy;.

e assume that ko; = ko, 1 + A mod 2% for A € Zow,
then g, (z) unchanged if one replaces
(z2i—1,%2;) by (z2; + A mod 2%, zo;_1 — A mod 2%)

e recover t key words with ¢ - 2% verification queries

e With an oracle for s bits of one key word, expected complexity to
find one word reduces to 2¥W =95 verification queries.

22

NH — UMAC [BHKKR99] — VMAC — WMAC (2)

UMAC: w = 32 marginal; ok if output length of 64, 96 or 128 bits.
(earlier version had w = 16)

VMAC: w = 64 (probably ok)

WMAC: variant with w = 16, 32 and 64

UMAC RFC 4418 [March 2006]

“It should be pointed out that once an attempted forgery is successful,
it is possible, in principle, that subsequent messages under this key
may be easily forged. This is important to understand in gauging the
severity of a successful forgery, even though no such attack on UMAC

is known to date.”

23

Conclusions

While universal hash functions have very attractive performance and
provable security, they can be very brittle in practice

e avoid reusing keys (Snow3G is good example)
e sender/verifier needs to guarantee/check uniqueness of nonces

e vulnerable to oracle that reveals part of the key (and thus to side-
channel attacks)

Some schemes are more secure than others. ..

EMAC based on AES is slower but more “robust”

e internal collisions (294 texts) lead to forgeries, but not to key
recovery

e NO kKnown way to use an oracle that gives access to 32 or 64 key
bits

e faster key setup

Ongoing: other universal hash functions, including improved attack
on MAC of Cary and Venkatesan

24

Summary

number of verify partial key

weak keys key guess information
Polynomial hash GF(2") > 1 k only yes
Polynomial hash GF(p) > 1 k only ?
Bucket hashing w/ small key =~r- 2(r=1)n subkey k; yes
MMH ~t- 2w 4 bit subkey k; yes
Square Hash pt —p!/(p—1t)! w-bit subkey k; yes

NMH/NH/WH — w-bit subkey k; yes

25

