SDAR

“Building the Car Instead of Reinventing the Whee

III

mailto:weinmann@cdc.informatik.tu-darmstadt.de
mailto:weinmann@cdc.informatik.tu-darmstadt.de

*A TECHNISCHE
UNIVERSITAT
DARMSTADT

What is SAGE?

= A computer algebra system

* Free software

" has both command-line and GUI

" integrates many other computer algebra systems

= aims to be “best of breed”
(cherry-picks the best algorithm implementations)

= Available for Linux and MacOS X
* VMware images available for Windows
= Solaris port is underway

06. November 2007 | Fachbereich 20 | Fachgebiet Theoretische Informatik | Prof. Johannes A. Buchmann | Ralf-Philipp Weinmann

*A TECHNISCHE
UNIVERSITAT
DARMSTADT

Why use SAGE?

.. or rather: what's wrong with other computer algebra systems?
= each CAS has its own language with its own idioms: entry barrier!

* Closed-source software (Magma, Maple, Matlab, Mathematica):
» not easily extensible
» can't look at intermediate results

= SAGE:
* uses a general-purpose scripting language [Python] for user interaction
= allows introspection

" Trust:

» “Can we expect somebody to believe a result of a program that he is not allowed
to see?” (Joachim Neubduser [founder of GAP], 1993)

06. November 2007 | Fachbereich 20 | Fachgebiet Theoretische Informatik | Prof. Johannes A. Buchmann | Ralf-Philipp Weinmann

r*; TECHNISCHE
/ UNIVERSITAT
f ~ DARMSTADT

Example: Expression simplification

sage: var('x")

sage: f = sin(x)A2+cos(x)A2

sage: f

s1n(x)A2 + cos(x)A2

sage: f.simplify_trig(Q)

1

sage: limit(Ctan(sin(x)) - sin(tan(x)))/xA7, taylor=True, x=0)
1/30

Above functionality is based on Maxima, developed 1982-2001 by William
Shelter. Maxima in turn is based on Macsyma, the first computer algebra
system ever, created at MIT in the 1960s.

06. November 2007 | Fachbereich 20 | Fachgebiet Theoretische Informatik | Prof. Johannes A. Buchmann | Ralf-Philipp Weinmann

Example: Integer Factorization

sage: bound = 2A100

sage: p = next_prime(ceil(random()*bound)+bound)
sage: g = next_prime(ceil(random()*bound)+bound)
sage: time factor(n, algorithm=’pari’)

CPU times: user 1.49 s, sys: 0.20 s, total: 1.69 s
Wall time: 2.64

2100151722605557969846297 * 2245605371277432538005587
sage: time gsieve(n)

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
Wall time: 20.10

([2100151722605557969846297, 2245605371277432538005587], '')

Above functionality is based on Pari and FlintQS. Pari is a CAS developed by
Henri Cohen and co-workers. FlintQS is an implementation of the quadratic
sieve developed by David Harvey and Bill Hart.

06. November 2007 | Fachbereich 20 | Fachgebiet Theoretische Informatik | Prof. Johannes A. Buchmann | Ralf-Philipp Weinmann

&5 TECHNISCHE
7=\ UNIVERSITAT
Y0/ DARMSTADT

W 5 TECHNISCHE
(&//)~) UNIVERSITAT
»'\ J DARMSTADT

Example: Linear algebra

sage: dimension=2000

sage: MatSpace = MatrixSpace(GF(2), dimension, sparse=True)
sage: M = MatSpace.random_element(density = 0.05)
sage: time M_echelon = M.echelon_form()

CPU times: user 3.16 s, sys: 0.01 s, total: 3.17 s
Wall time: 3.64

sage: A = random_matrix(GF(127),2000,2000)

sage: B = random_matrix(GF(127),2000,2000)

sage: time D = A * B

CPU times: user 13.72 s, sys: 0.24 s, total: 13.96 s
Wall time: 28.30

sage: time C = A._multiply_linbox(B)

CPU times: user 6.64 s, sys: 0.25 s, total: 6.89 s
Wall time: 11.82

SAGE has both its own linear algebra implementation (row echelon form however
does not work for sparse matrices over extension fields yet) and is able to make use
of LinBox (which in turn bases some of its linear algebra on ATLAS and GSL).

06. November 2007 | Fachbereich 20 | Fachgebiet Theoretische Informatik | Prof. Johannes A. Buchmann | Ralf-Philipp Weinmann

! 5 TECHNISCHE
7/=\ UNIVERSITAT
9’ DARMSTADT

Example: Lattice reduction

sage: M = random_matrix(ZZ,300)

sage: time M2=M.LLLQO)

CPU times: user 7.35 s, sys: 0.08 s, total: 7.43 s
Wall time: 10.66

sage: M_magma = magma(M)

sage: time M2_magma = M_magma.LLL()

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
Wall time: 6.27

The above benchmark is Stehlé vs. Stehlé. Damien Stehlé implemented both
the Magma LLL and the library fpLLL which is underlying SAGE’s LLL
command.

06. November 2007 | Fachbereich 20 | Fachgebiet Theoretische Informatik | Prof. Johannes A. Buchmann | Ralf-Philipp Weinmann

&5 TECHNISCHE
(/=) UNIVERSITAT
'~ DARMSTADT

Example: Systems of equations for AES

sage: SR = mq.SR(4,2,2,4,gf2=True)

sage: flag = False

sage: while flag == False:

- try:

- flag = True

ce et plaintext = SR.random_element()
ceet key = SR.random_element()

ceead ciphertext = SR(plaintext,key)
ceet except ZeroDivisionError:

- flag = False

sage: F,s = SR.polynomial_system(plaintext,key)
sage: print F

Polynomial System with 672 Polynomials in 24@ Variables

Above functionality written by Martin Albrecht for SAGE in pure Python. More
general framework for this is forthcoming (SAGE Days 6).

06. November 2007 | Fachbereich 20 | Fachgebiet Theoretische Informatik | Prof. Johannes A. Buchmann | Ralf-Philipp Weinmann

&5 TECHNISCHE
(/=) UNIVERSITAT
'~ DARMSTADT

Example: Polynomial system solving

sage: R = PolynomialRing(GF(5), 4, ["a","b","c","d"])

sage: a,b,c,d = R.gens()

sage: I = (a+b+c+d, a*b+a*d+b*c+c*d, a*b*c+a*b*d+a*c*d+b*c*d,
a*b*c*d-1)*R; I

Ideal (a + b + ¢ + d, a*b + b*¥c + a*d + c*d, a*b*c + a*b*d +
a*c*d + b*c*d, a*b*c*d - 1) of Multivariate Polynomial Ring 1in
a, b, ¢, d over Finite Field of size 5

sage: B = I.groebner_basis()

sage: B

[a + b+ c+ d, bA2 + 2*b*d + dA2, b*cA2 + cA2*%d - b*dA2 - dA3,
b*c*dA2 + cA2*¥dA2 - b*dA3 + c*dA3 - dAM4 - 1, b*dAM + dAS - b -
d, cA3*dA2 + cA2*dA3 - ¢ - d, cA2*¥dA4 + b*c - b*d + c*d - 2*dAZ]

SAGE currently uses Singular to compute Grobner bases. In the near future,
SAGE will also include a fast implementation of Faugére's F4 algorithm
(written by me).

06. November 2007 | Fachbereich 20 | Fachgebiet Theoretische Informatik | Prof. Johannes A. Buchmann | Ralf-Philipp Weinmann

<57\ TECHNISCHE
7=\ UNIVERSITAT
Y9y~ DARMSTADT

SAGE Internals

= Written in Python
= wrappers (“glue code”) written for libraries SAGE builds upon
= programs without bindings are tied to SAGE using pipes
* Cython used to compile critical code paths into C
= Source code contains known-answer tests (“doctests”)
= Source lines of code for sage-2.8.9.rc1 [Michael Abshoff]:
» Total Physical Source Lines of Code (SLOC) = 4,817,399
» Development Effort Estimate, Person-Years = 1,472.26
= Ansi C:1907386 (39.59%)
» Python: 1186092 (24.62%)
= C++: 553701 (11.49%)
» Fortran: 492184 (10.22%)
= Lisp: 340210 (7.06%)
= Shell script: 138356 (2.87%)

06. November 2007 | Fachbereich 20 | Fachgebiet Theoretische Informatik | Prof. Johannes A. Buchmann | Ralf-Philipp Weinmann

10

.«cr; TECHNISCHE
.\ h' UNIVERSITAT
\"" - DARMSTADT

Python example

def InsertionSort(A):
for j in range(l, len(A)):

key = A[]]

1 =73 -1

while (1 >=0) and (A[1] > key):
A[i+1] = A[i]
1 =1 -1

A[i+1] = key

06. November 2007 | Fachbereich 20 | Fachgebiet Theoretische Informatik | Prof. Johannes A. Buchmann | Ralf-Philipp Weinmann

11

