
Institute for Applied Information Processing
and Communications (IAIK) - Krypto Group

Faculty of Computer Science
Graz University of Technology

Cryptanalysis of the GOST Hash Function

Florian Mendel, Norbert Pramstaller,
and Christian Rechberger

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 2

Outline

Motivation
Description of GOST
A preimage attack on the GOST hash function (FSE 2008)

A pseudo-preimage attack on the compression function
A preimage attack on the hash function

Improving the attack (work in progress)
A fixed-point in the GOST block cipher
Improving the preimage attack on the hash function
A collision attack on the hash function

Conclusion and Future Work

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 3

Motivation

Russian government standard (GOST-R-34.11-94)

Russian Digital Signature Algorithm
(GOST-R-34.10-94 and GOST R 34.10-2001)

Specified in several RFCs

Implemented in SSL (openSSL)

….

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 4

Security requirements

Preimage resistance
Attack complexity should be 2n

Second-Preimage resistance
Attack complexity should be 2n

Collision resistance
Attack complexity should be 2n/2

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 5

Outline

Motivation
Description of GOST
A preimage attack on the GOST hash function (FSE 2008)

A pseudo-preimage attack on the compression function
A preimage attack on the hash function

Improving the attack (work in progress)
A fixed-point in the GOST block cipher
Improving the preimage attack on the hash function
A collision attack on the hash function

Conclusion and Future Work

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 6

The GOST Hash Function

The GOST hash function was published 1994

Iterated Hash Function processes 256-bit blocks and
produces a 256-bit hash value

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 7

The compression function of GOST

The compression function of GOST consists of 3 parts

State Update Transformation

Key Generation

Output Transformation

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 8

The State Update Transformation

Takes as input the intermediate
hash value Hi-1 and the key K to
compute S

where E denotes an encryption
with the GOST block cipher

h0h1h2h3

64 64 6464

E

E

E

E

s0s1s2s3

k3

k2

k1

k0

256

256

256

256

Hi-1

K

256

1024

S

256

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 9

The Key Generation

Takes as input the intermediate hash value Hi-1 and the
message block Mi to compute the 1024-bit key K

where A and P are linear transformations.

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 10

The Output Transformation

The output transformation combines the intermediate hash
value Hi-1, the message block Mi and the output of the stat
update transformation S to compute the output Hi

The linear transformation is given by

where

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 11

Outline

Motivation
Description of GOST
A preimage attack on the GOST hash function (FSE 2008)

A pseudo-preimage attack on the compression function
A preimage attack on the hash function

Improving the attack (work in progress)
A fixed-point in the GOST block cipher
Improving the preimage attack on the hash function
A collision attack on the hash function

Conclusion and Future Work

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 12

Basic Attack Strategy

Construct pairs (Hi-1 , Mi) where parts of S (64 bits) are equal
If we can construct these pairs efficiently then we can construct
a pseudo-preimage with a complexity of about 2192

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 13

Pseudo-Preimage for the Compression Function

Since the output transformation of GOST

is linear, it can be also written as

Furthermore, is invertible and hence, can be written as

X Y Z

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 14

Split the words X,Y,Z into 64-bit words

then the previous equation can be written as:

Pseudo-Preimage for the Compression Function

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 18

Pseudo-Preimage for the Compression Function

We want to construct pairs (Hi-1 , Mi) where s0 = E(k0 , h0) is
equal for each pair

k0 depends linearly on Hi-1 and Mi :

To keep s0 constant the following equations have to be
fulfilled

arbitrary

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 19

Pseudo-Preimage for the Compression Function

Once we have fixed k0 and h0 and hence s0, we have to fix
y0 and z0 to guarantee that

is correct with and

This adds the following equation

to the our system of equations over GF(2)

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 20

Pseudo-Preimage for the Compression Function

In total we get a system of 6*64 linear equations in 8*64
variables over GF(2)

We use this to construct a pseudo-preimage for the
compression function of GOST

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 21

Pseudo-Preimage for the Compression Function

By solving this system of equations over GF(2) we get 2128

pairs (Hi-1 , Mi), where x0 is correct.

For each pair compute X and check if x1, x2, x3 are correct

After testing all 2128 pairs we will find a correct pair with
probability 2-64

By repeating the attack about 264 times (with different
values for a, b0, b1, b2, b3) we will find a pseudo-preimage for
the compression function of GOST

Constructing a pseudo-preimage has a complexity of 2192

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 23

A Preimage for the Hash Function

How can we turn the pseudo-preimage attack on the
compression function into a preimage attack on the
hash function?

Problems:
Checksum over all message words
Padding

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 24

Outline of the Attack

Assume we want to construct a preimage for GOST
consisting of 257 message blocks

The attack basically consist of 4 steps

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 25

Outline of the Attack

STEP 1
Construct 232 pseudo-preimages for the last iteration of GOST
and save the 232 pairs in the list L
This has a complexity of about 2224 evaluations of the
compression function of GOST

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 26

Outline of the Attack

STEP 2
Construct a 2256 multicollision for the first 256 message blocks
Thus, we have 2256 messages
which all lead to the same intermediate hash value H256.

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 27

Outline of the Attack

STEP 3
Find a message block M257 such that for the given H256 and
|M| we find a H258 which is also contained in the list L
This has a complexity of about 2225 evaluations of the
compression function of GOST

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 28

Outline of the Attack

STEP 4
From the set of 2256 messages
find a message that lead to
This can be done by applying a meet-in-the-middle approach

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 29

STEP 4: Constructing the needed value in the checksum

From a set of 2256 messages
we have to find a message M* that leads to the needed
value

Outline of the attack:
Save all 2128 values for
in the list L
For all values
check if there is a entry in the list L

After testing at most 2128 values we expect to find a matching
entry in the list L

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 31

Complexity of the Attack

The complexity of the attack is dominated by STEP 1 and
STEP 3 of the attack.

Note that a memory less variant of the meet-in-the-middle
attack can be used in STEP 4 of the attack to reduce the
memory requirements.

2129222521372224

STEP 4STEP 3STEP 2STEP 1

--213238

STEP 4STEP 3STEP 2STEP 1

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 32

Summary

We have shown a pseudo-preimage attack on the
compression function of GOST with a complexity of 2192

We have shown a preimage attack on the GOST hash
function with a complexity of about 2225 and memory
requirements of 238 bytes

Both attacks are independent of the GOST block cipher

Institute for Applied Information Processing
and Communications (IAIK) - Krypto Group

Faculty of Computer Science
Graz University of Technology

Improving the Attack

Florian Mendel, Norbert Pramstaller, Christian Rechberger,
Marcin Kontak, and Janusz Szmidt

(work in progress)

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 34

Outline

Motivation
Description of GOST
A preimage attack on the GOST hash function (FSE 2008)

A pseudo-preimage attack on the compression function
A preimage attack on the hash function

Improving the attack (work in progress)
A fixed-point in the GOST block cipher
Improving the preimage attack on the hash function
A collision attack on the hash function

Conclusion and Future Work

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 35

The GOST Block Cipher

The block cipher was published in 1989
It is Russian government standard (GOST 28147-89)

Block size: 64 bits
Key size of 256 bits

64

256

64

KEY

PLAINTEXT

CIPHERTEXT

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 36

The GOST Block Cipher

32-round Feistel network

32-bit round key sKi

Simple Key Schedule

where

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 37

A fixed-point in the GOST Block Cipher

If we can construct a fixed-point in the first 8 rounds of GOST,
then we have also a fixed-point for 32 round if L0=R0

Construction a fixed-point in the first 8 rounds is easy, since
each word of the key is only used once

Example: L0= R0= 0

3B388231B074FF43E50480CC5D39FB39C477B6946BDDFCC418E4D2260ABDC4548

487334D5E470253FDEB5DDC57540205065103CC84A6C316B6DB7D3CBA222761E7

62A655178A7FA3EC8CB7C0A6285C0267F49750990DA7E0C2D31A7AD94067D0F76

C5109C6D3D0BF7DED2F37938D26A644D7056AF8607395FDE524D5E311F27086C5

CBC28A8943ECC12D6D324773D40E9A48B7F93FA1ADE4574B6C759B2CA8E418B84

26776A13A20F384DCE2BEABBCA156F013F07C5D947B5C0F1E8FB14D031E4AE5A3

B515779F5782AEAFD269902E769D919D9742312A8F78C57E3C3812E3FF48B08A2

B1A5E9DB5FC1DA30C5987119E9298408C3965FE0CAE90664C2DF23D834A451AA1

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 40

Improving the Preimage Attack on the Hash Function

We want to construct many message blocks Mi where
s0 = E(k0 , h0) is equal for a fixed value of Hi-1 (h0 = 0)

Now x0 depends linearly on Hi-1 and Mi, to guarantee that x0
is correct the following equation has to be fulfilled:

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 43

Improving the Preimage Attack on the Hash Function

Since z0 depends linearly on Mi this restricts our choices of
the key k0 =

Hence, constructing a fixed-point for
gets more complicated

But still:
To construct a fixed-point in the GOST block cipher we only
need to construct a fixed-point in the first 8 rounds if h0 = 0

In the first 8 rounds each word of the key is only used once

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 44

Constructing many fixed-points

We use a meet in the middle attack to construct 264 fixed-points
with a complexity of about 264 evaluations of the GOST block
cipher

Note that the choice of the 8 subkeys sk0 ,…,sk7 is restricted by 64
equations over GF(2)

rounds 1-4
forward

rounds 5-8
backward

h0= 0 h0= 0

sk0 , sk1 , sk2 , sk3 sk4 , sk5 , sk6 , sk7

264264

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 45

Improving the Preimage Attack on the Hash Function

With this method we get 264 message blocks Mi , where x0
is correct.

We can repeat the attack 264 times to construct 2128

message blocks Mi , where x0 is correct.

For each message block we compute X and check if x1, x2,
x3 are correct

After testing all 2128 message blocks we will find a correct
message block with probability 2-64

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 46

Outline of the Attack

Again assume we want to construct a preimage for GOST
consisting of 257 message blocks

The attack basically consist of 4 steps

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 47

Outline of the Attack

STEP 1
Construct a 2256 multicollision for the first 256 message blocks
Thus, we have 2256 messages
which all lead to the same intermediate hash value H256.

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 48

Outline of the Attack

STEP 2
Find a message block M257 such that for the given H256 and
|M| we find a H258 with h0 = 0
This has a complexity of about 264 evaluations of the
compression function of GOST

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 49

Outline of the Attack

STEP 3
Construct a preimage for the last iteration of the GOST hash
function by constructing 2128 fixed-points (probability 2-64).
If no preimage is found then go back to STEP 2

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 50

Outline of the Attack

STEP 4
From the set of 2256 messages
find a message that lead to
This can be done by applying a meet-in-the-middle approach

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 51

Complexity of the Attack

The complexity of the attack is dominated by STEP 3 of the
attack.

The memory requirements of the attack are dominated by
STEP 3 of the attack

2129264 * 2128264 * 2642137

STEP 4STEP 3STEP 2STEP 1

-269-213

STEP 4STEP 3STEP 2STEP 1

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 52

A Remark on Collision Attacks on GOST

Since we can construct 296 message blocks Mi which all
produce the same x0 we can construct a collision for the
compression function (birthday attack)

Again we can use multicollisions to turn the collision attack
on the compression function into a collision attack on the
hash function

To construct also a collision in the checksum we use a
generalized birthday attack to reduce the complexity of this
step of the attack

The collision attack has a complexity of about 2105 < 2128

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 53

Summary of Results

By exploiting special properties of the compression function
of GOST block Cipher we can construct preimages for the
hash function with a complexity of about 2225 and memory
requirements of 238 bytes

By exploiting special properties of the GOST block cipher
we can find

Preimages for the GOST hash function with a complexity of
about 2192 and memory requirements of 269 bytes
Collisions GOST hash function with a complexity of about 2105

and memory requirements of 269 bytes

IAIK Krypto Group

Cryptanalysis of the GOST Hash Function 55

Thank you for your Attention

