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Linear Cryptanalysis

One of the most powerful cryptanalytic attacks on DES

Matsui 1993

Notation:

Let m and n be integers, m

�

n.

Data X �
�

X1 � X2 �� � � � Xn

�

Mask ξ �
�

ξ1 � ξ2 �� � � � ξm

�

,

where 1

� ξ1

� ξ2

�
� � �

� ξm
�

n

Masked data:

X

�

ξ

�

� Xξ1

�

Xξ2

�
� � �

�
Xξm

addition modulo 2, substring parity
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Algorithm 1
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Algorithm 2
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Distinguishers

Matsui’s Algorithm 1 is of Type 1, and Algorithm 2 is of Type 2.
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Statistical Distinguishing Attack

Distinguishing attack operates in two phases

Design phase
Design of Distinguisher

Distinguisher is a method to transform empirical data from the

cipher to test data with known statistics

Statistical Inference phase
Statistical hypothesis testing is performed on the test data.

Challenge: Find a transformation which gives distinguishable
statistics with as little data as possible.
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Hypothesis Testing

Probability distributions

D1 estimated theoretical distribution from the cipher

D0 some other known distribution, e.g., uniform distribution

Hypotheses

H0: test data is drawn from D0

H1: test data is drawn from D1

Statistics computed from the data

Estimation of the data complexity N for sufficient confidence

level.

On Linear Cryptanalysis Using Multiple Linear Approximations – 9/19



Biryukov, et al.: Multiple Approximations (1)

Multiple linear approximations:

X

�

ξ1 � �

Y

�

η1 �

� K

�

κ1 �

with bias ε1

X

�

ξ2 � �

Y

�

η2 �

� K

�

κ2 �

with bias ε2

� � �

X

�

ξm � �

Y

�

ηm �

� K
�

κm �

with bias εm

Biryukov, et al.: Generalisations of Matsui’s Algorithms 1 and 2

Assumption: Linear approximations statistically independent.

Simulations on DES.

Performance for ciphers with uniformly low biases (such as

AES)?
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Biryukov, et al.: Multiple Approximations (2)

Sample data Z1 � Z2 � Z3 �� � � � ZN , Zi

�
�

Pi � Di

�

m separate two-valued distributions considered

p j

� 1 � q j

�
�

1

�

c j

��

2 � 1
2

� ε j, j � 1 �� � � � m

Assumption: Distributions statistically independent.

Empirical distribution p̂ j

� Nj
N , j � 1 �� � � � m,

where Nj

� #

�

i

�

Pi

�

ξ j � �

Di

�

η j �

� 0

�

. Set ĉ j

� 2p̂ j

� 1.

The relative likelihood of a key class z �
�

z1 � z2 �� � � � zm

�

is determined

by the Euclidean distance (
�

2-distance) between the vectors ĉ and

cz

�
� �

� 1

� z1c1 �� � � �
� �

� 1
� zmcm

�

. That is, the least squares regression

is used to select the key z, for which the the data fits the model best.

Required data N is inversely proportional to the “capacity” = ∑m
j � 1 ε2

j .
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Baignères, et al.: Multidimensional Approximations in

Markov Model (1)

Presented the optimal statistics for distinguishing between two

distributions:

D1 theoretical distribution from the cipher with variance Var

D0 a different distribution, e.g., the uniform distribution

H0: test data is drawn from D0

H1: test data is drawn from D1

Sample data Z1 � Z2 � Z3 �� � � � ZN ,

Optimal statistics: Log-likelihood ratio

LLR �

N

∑
i � 1

log2
D1

�

Zi

�

D0

�

Zi

� � ∑
z � Z

Nz log2
D1

�

z

�

D0

�

z

�

where Nz

� #

�

i

�

Zi
� z

�

.
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Baignères, et al.: Multidimensional Approximations in

Markov Model (2)

Required data N is inversely proportional to

∑
z

�

D0

�

z

�

� D1

�

z

� � 2

D0

�

z

�

If D0 uniform, then N � 1

�

2mVar.

Baignères, et al., investigated probability distributions related to the

transition matrices of approximations in the Markov cipher model,

that is, the conditional probabilities

Pr
�

Y
�

η

� �

X

�

ξ

��

averaged over the key.
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Maximov, et al.: Multidimensional Linear

Cryptanalysis of Stream Ciphers

Distinguishing attacks on stream ciphers.

Multidimensional linear approximations over Boolean vector functions

f : GF

�

2

� n � GF

�

2

� m, f

�

X

�

� Y in stream cipher constructions. Let

M : GF

�

2

� n � GF

�

2

� n be linear. The m-bit noice is defined as

Z � MX

�

Y �
and it takes 2m values.

D1 is the distribution of the noice Z with variance Var.

D0 is the uniform distribution.

Data complexity N � 1

�

2mVar.
(Originally, Maximov, et al., used the statistical distance, that is,

�

1-norm to give an estimate of the data complexity.)
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Multidimensional Linear Approximation

of Block Ciphers – Fixed Key Approach

D1 is the probability distribution of Z �
�

Z1 �� � � � Zm

�

, where:

Z j

� X

�

ξ j

� �

Y

�

η j

� �

K

�

κ j

�

, with bias ε j�

Consider the linear span of m linear approximations:

Z

�

µ

�

� X

�

ξ

� �

Y

�

η

� �

K

�

κ
�

, with bias εµ �

µ �
�

ξ � η � κ

��� M � linear span of
� �

ξi � ηi � κi � �

i � 1 � 2 �� � � � m

� � �

0

�
�

Baignères, et al.: Distinguishing from the uniform distributionD0 has

data complexity inversely proportional to

2mVar � ∑
µ � M

ε2
µ

� m

∑
j � 1

ε2
j�
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Linear Approximation

f : GF

�

2

� n � GF

�

2

� m, m � n, vector-valued Boolean function.

Y � f

�

X

�

, linear approximation Y

�

η

�

� X

�

ξ

�

, with correlation

c

�

Y

�

η

�
� X

�

ξ

� �

� 1 � 2Pr

�

Y

�

η

�

� X

�

ξ

��

.

Parseval’s Theorem: Linear approximations with non-zero

correlation exist.

Linearity of f

L

�

f

�

� max
ξ � η

� � /0

�

c

�

Y

�

η

�
� X

�

ξ

� � �
�

The goal is to find ξ and η which maximise linearity, first for

relevant parts of the cipher, and then for the entire cipher.
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Linear Resistance

N. & Knudsen 1992, N. 1994: Provable security against linear

cryptanalysis

Use functions f with L

�

f

�

as small as possible.

Example (N. 1993): x� GF

�

2n �

,

f

�

x

�

�

�
�

x

� 1 � x
�

� 0

0 � x � 0

Standard (one-dimensional) linear attack data complexity � 2n.

With n � 8 used as the only source of nonlinearity in the Advanced

Encryption Standard (2002), L

�

f

�

� 2

� 3.
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Multidimensional Linear Resistance

Resistance against Matsui’s one-dimensional linear cryptanalysis

may not guarantee resistance against multidimensional linear

cryptanalysis.

Example. The vector-valued Boolean function f
�

n
�

in GF

�

2

� n

defined by the function x � � x

� 1 in GF

�

2n �

has variance

Var

�

f

�

n

� �

�

�
�

2

� n �

1 � 21 � n � � 2

� n � for n even

2

� n � for n odd �

It follows that the data complexity of n-dimensional linear

distinguishing attack applied to f

�

n

�

is constant (independent of n).

N.& Hermelin 2007: Vectorial bent functions are optimal against mul-

tidimensional linear approximation.
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Conclusions

Previous approaches to multiple and multidimensional linear

approximations surveyed.

Fixed key multidimensional linear approximation of block

ciphers discussed.

Resistance against multidimensional linear cryptanalysis is an

open question.
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