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Linear Cryptanalysis

B One of the most powerful cryptanalytic attacks on DES
B Matsui 1993

B Notation:
Let m and n be integers, m < n.
Data X = (X1,X2,...,Xp)
MaSk E — (217227 s 7Em),
where1 <1 <& <...<&m<n
Masked data:
X(8) =Xe, ®Xe, @ ... D Xg,,
addition modulo 2, substring parity
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Algorithm 1

—

black box

K

C

Relation
P(r)® C(y) = K(x)
holds with bias
g=p—3#0
If &> 0 and known P,C

pairs support
P(r)y®C(y) =1

select K(x)=1, else K(x)= 0.
If £¢< 0 and known P,C pairs
support

P(2)®C(y)=1
select K(x)=0, else K(x)= 1.
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Algorithm 2

P Decrypt over the last round
With Kyess

- | K D, =C, O f(K

guess !
< 15 rounds > Relation

o P(72) 0 D(J) = K (k)

| holds with absolute bias
DL DR

! A K ‘p—%‘iO

é,@_ if K guess = Ky bUt with much
[ less bias, i.e., the behavior is

more random, if K, 7 Ky
C Cr

Ce)

black box
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Distinguishers

Matsui’s Algorithm 1 is of Type 1, and Algorithm 2 is of Type 2.

Derived reduced functionality as black box

Distinguisher is a reduced functionality possibly dependent of a part
of the key. Two types of distinguishers for information deduction:

Distinguishing from more random Selecting the correct K,
Type 1

Type 2
&'
)’ =

or

more random
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Statistical Distinguishing Attack

Distinguishing attack operates in two phases

®m Design phase
Design of Distinguisher
Distinguisher is a method to transform empirical data from the
cipher to test data with known statistics

m Statistical Inference phase
Statistical hypothesis testing is performed on the test data.

Challenge: Find a transformation which gives distinguishable
statistics with as little data as possible.
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Hypothesis Testing

B Probability distributions
Dy estimated theoretical distribution from the cipher
Do some other known distribution, e.g., uniform distribution

B Hypotheses
Ho: test data is drawn from Dy
H1: test data is drawn from Dy

B Statistics computed from the data

B Estimation of the data complexity N for sufficient confidence
level.
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Biryukov, et al.. Multiple Approximations (1)

B Multiple linear approximations:

X(EHaeY(nl) = K(k) with bias &
X(E)aY(N?) = K(k?) with bias &
XEMaY(N™ = K(k™) with bias g

B Biryukov, et al.: Generalisations of Matsui’s Algorithms 1 and 2
B Assumption: Linear approximations statistically independent.
B Simulations on DES.

B Performance for ciphers with uniformly low biases (such as
AES)?
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Biryukov, et al.. Multiple Approximations (2)

Sample data Z1,7Z2,7Z3, ...,ZN, Zi = (P;, Dj)

M separate two-valued distributions considered
pj=1-dj=(1+cj)/2=35+¢€}, j=1,...,m
Assumption: Distributions statistically independent.
Empirical distribution pj = % j=1,...,m,

where Nj = #{i Pi(Ej) P Di(r]j) =0}. SetCj=2p;— 1.

The relative likelihood of a key class z = (21,2, ...,zy) is determined
by the Euclidean distance (¢»-distance) between the vectors € and

c; = ((—1)*cy,...,((=1)"™cy). Thatis, the least squares regression
IS used to select the key z, for which the the data fits the model best.
Required data N is inversely proportional to the “capacity” = ern:lsjz.
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Baigneres, et al.. Multidimensional Approximations in
Markov Model (1)

Presented the optimal statistics for distinguishing between two
distributions:

D theoretical distribution from the cipher with variance Var
Do a different distribution, e.g., the uniform distribution

Ho: test data is drawn from g

H1: test data is drawn from Dy

Sample data Z1,22,23,...,2ZN,

Optimal statistics: Log-likelihood ratio

LLR = Zlog2 @
b(Z

where N; = #{i|Z; = z}.
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Baigneres, et al.. Multidimensional Approximations in

Markov Model (2)

Required data N is inversely proportional to

(Do(2) — Dr(2))?
2 Do)

Z

If Do uniform, then N ~ 1/2"MVar.
Baigneres, et al., investigated probability distributions related to the

transition matrices of approximations in the Markov cipher model,
that is, the conditional probabilities

Priy (n)|X(&)]

averaged over the key.
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Maximov, et al.: Multidimensional Linear

Cryptanalysis of Stream Ciphers

Distinguishing attacks on stream ciphers.

Multidimensional linear approximations over Boolean vector functions
f:GF(2)" — GF(2)™, f(X) =Y in stream cipher constructions. Let
M: GF(2)" — GF(2)" be linear. The m-bit noice is defined as

Z=MXaY,

and it takes 2™ values.
‘D1 is the distribution of the noice Z with variance Var.
7o is the uniform distribution.

Data complexity N =~ 1/2MVar.
(Originally, Maximov, et al., used the statistical distance, that is,
¢1-norm to give an estimate of the data complexity.)
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Multidimensional Linear Approximation

of Block Ciphers — Fixed Key Approach

Dy is the probability distribution of Z = (Z1,...,Zn), where:
Zi =X(&j) @Y (nj) ®K(Kj), with bias €j.
Consider the linear span of m linear approximations:
Z(M) =X(&) DY (n) ®K(K), with bias g,

u=(&,n,K) € M = linear span of {(§',n',k")[i=1,2,...,m}\ {0}.

Baigneéres, et al.: Distinguishing from the uniform distributionDg has
data complexity inversely proportional to

m

2MVar = Z sﬁ > Z EJZ.
nem =1
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Linear Approximation

f:GF(2)"
Y = f(X), linear approximation Y (n) = X(§), with correlation
c(Y(n),X(8)) =1=2Pr[Y(n) = X(c)].

B Parseval’'s Theorem: Linear approximations with non-zero

— GF(2)M, m < n, vector-valued Boolean function.

correlation exist.

B Linearity of f

L(f)—arrg]%IC( (n),X(&))I-

B The goal is to find & and n which maximise linearity, first for
relevant parts of the cipher, and then for the entire cipher.
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Linear Resistance

N. & Knudsen 1992, N. 1994: Provable security against linear
cryptanalysis

m Use functions f with £(f) as small as possible.

Example (N. 1993): x € GF (2"),

Standard (one-dimensional) linear attack data complexity ~ 2".
With n = 8 used as the only source of nonlinearity in the Advanced
Encryption Standard (2002), £(f) =273,
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Multidimensional Linear Resistance

Resistance against Matsui's one-dimensional linear cryptanalysis
may not guarantee resistance against multidimensional linear
cryptanalysis.

Example. The vector-valued Boolean function f(") in GF(2)"
defined by the function x — x~! in GF(2") has variance

27 "(1—2"") =~ 27" forn even

Var(f(”)) N 2" forn odd

It follows that the data complexity of n-dimensional linear
distinguishing attack applied to f (") is constant (independent of n).

N.& Hermelin 2007: Vectorial bent functions are optimal against mul-

tidimensional linear approximation.
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Conclusions

B Previous approaches to multiple and multidimensional linear
approximations surveyed.

B Fixed key multidimensional linear approximation of block
ciphers discussed.

B Resistance against multidimensional linear cryptanalysis is an

open question.
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