

Pruning and Extending the HB⁺ Family Tree

Henri Gilbert, Matt Robshaw, and Yannick Seurin

Orange Labs

unrestricted

Outline

- HB⁺ [Juels and Weis 05]: strengths and weaknesses
- Cryptanalysis of HB⁺ variants
 - HB-MP [Munilla and Peinado 07]
 - HB^{*} [Duc and Kim 07]
 - HB⁺⁺ [Bringer, Chabanne, and Dottax 06]
- A novel variant: HB[#]
 - RANDOM-HB[#]
 - HB[#]

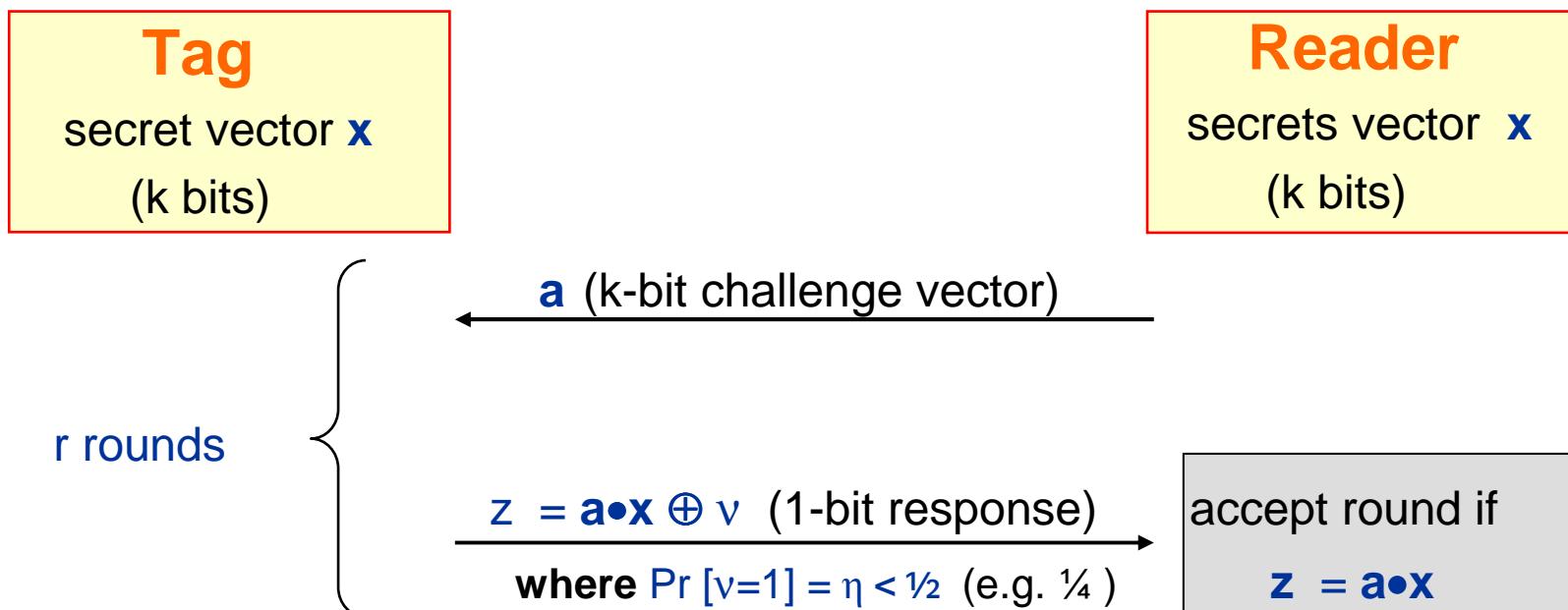
Pervasive devices

- Issue: protection of single memory chips...

- RFID Tags (Radio Frequency Identification)
 - very low cost cards without microprocessor

- ... against chip cloning and replay attacks...

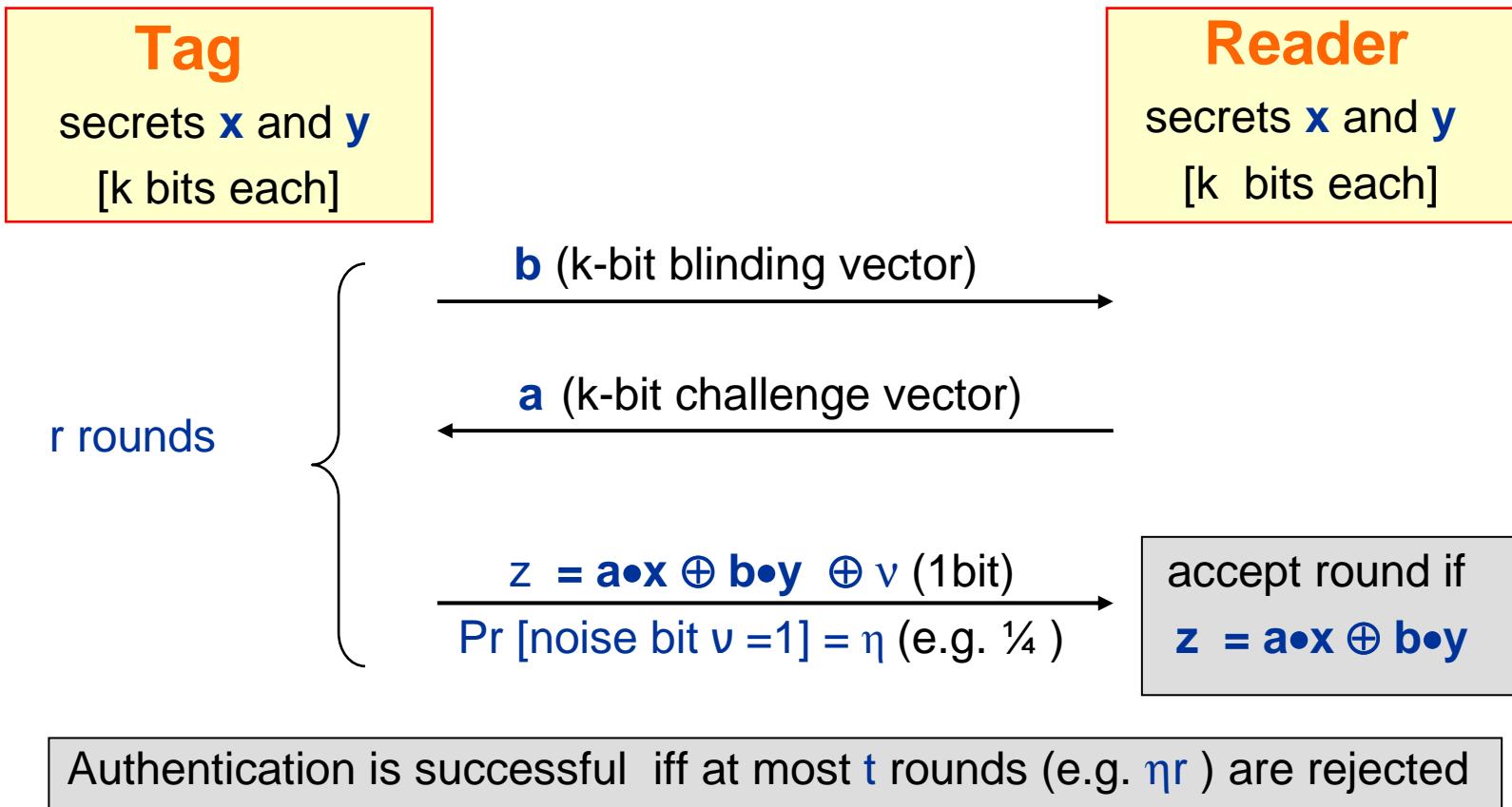
- protection against duplication (tickets, banknotes)
 - protection against counterfeiting


- ... by means of symmetric authentication

- limited computing resource (~ 1000 gates/chip)
=> non-standard symmetric authentication

HB

[Hopper and Blum 01]: secure against passive attacks only



Authentication is successful iff at most t rounds (e.g. ηr) are rejected

The HB⁺ protocol

[Juels and Weis, Crypto'05]: sequential version

[Katz and Shin, Eurocrypt'06]: parallel version

k: vectors length [224]; **r**: #rounds [60]; **η** :noise rate [1/4]; **t**: acceptance threshold [25]

Security of HB⁺

☺ HB⁺ is provably secure against active attacks [JW05, KS06]

Reduction to the conjectured intractability of the LPN problem:

Given: a known random $q \times k$ matrix \mathbf{A}

a noise parameter η used to draw bits of a q -bit noise vector \mathbf{v}

a q -bit vector $\mathbf{z} = \mathbf{A} \cdot \mathbf{x} \oplus \mathbf{v}$ (k -bit vector \mathbf{x} and \mathbf{v} are unknown)

Find: the k -bit vector \mathbf{x}

- best solving algorithms: [BKW03], later on improved in [LF06]
⇒ The initially suggested value $k \approx 250$ [JW05, KS06] is too small.

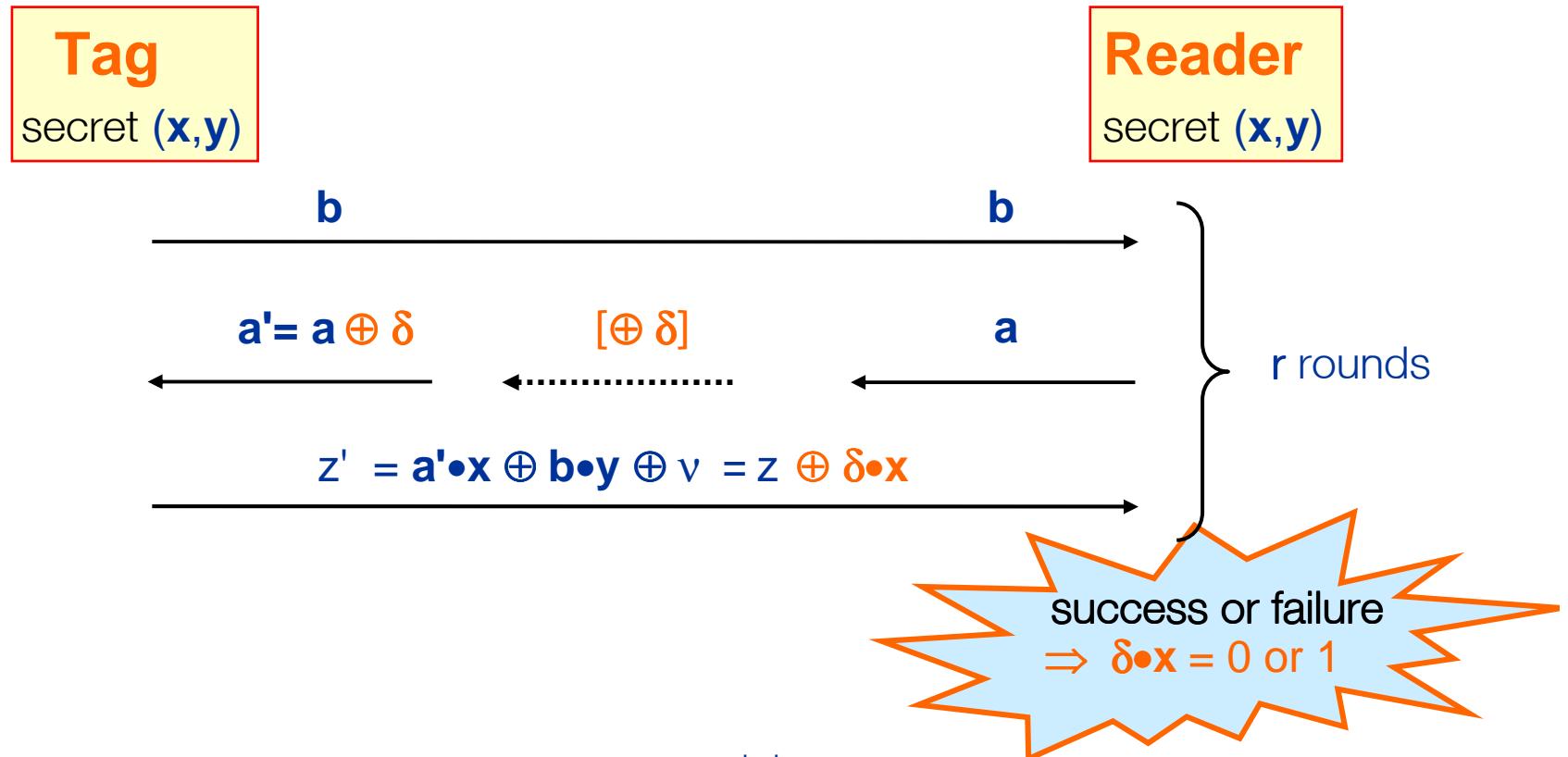
☹ The security model underlying the proofs is restricted

- and there is an efficient attack outside from this model (see hereafter)

Practical limitations of HB⁺

	r	η	k	false reject rate P_{FR}	false accept rate P_{FA}	trans.cost (bits) initial k	$k=512$
[JW]	60	0.25	224	43% (!)	6×10^{-6}	26984	82000
[KS]	40	0.125	200	38% (!)	7×10^{-9}	16040	41000

⌚ Error rates: false rejection rates P_{FR} are unacceptably high


- this is partly due to the unfortunate choice $t=\eta r$
- $t > \eta r$ improves the P_{FR} - P_{FA} balance but the order of magnitude of $\max(P_{FA}, P_{FR})$ remains too high (1%)

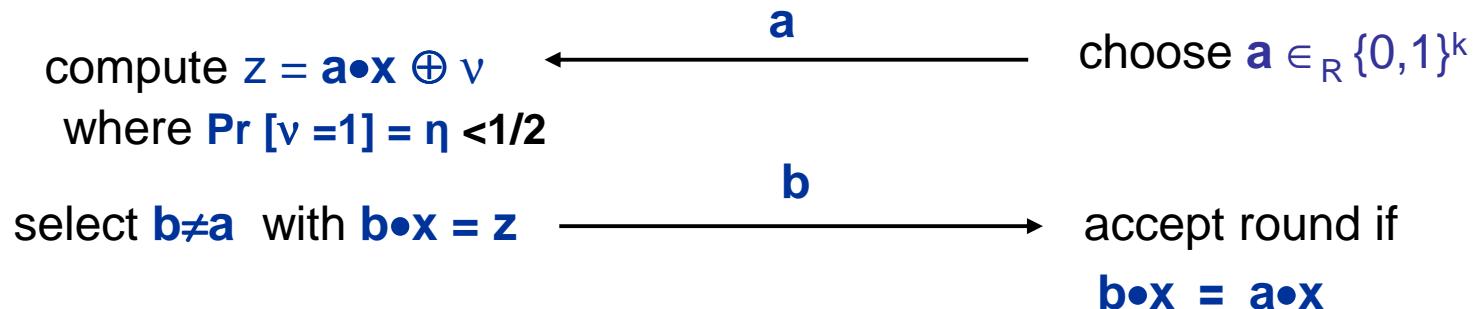
⌚ Transmision costs are unacceptably high

- 2 k-bit vectors have to be exchanged to get a 1-bit response
- transmission payload: $r(2k+1)$ bits

MIM Attack on HB⁺ [GRS05]

If an adversary can (1) modify challenge vectors and (2) know whether auth. succeeds then any linear comb. $\delta \bullet x$ of the x bits can be derived:

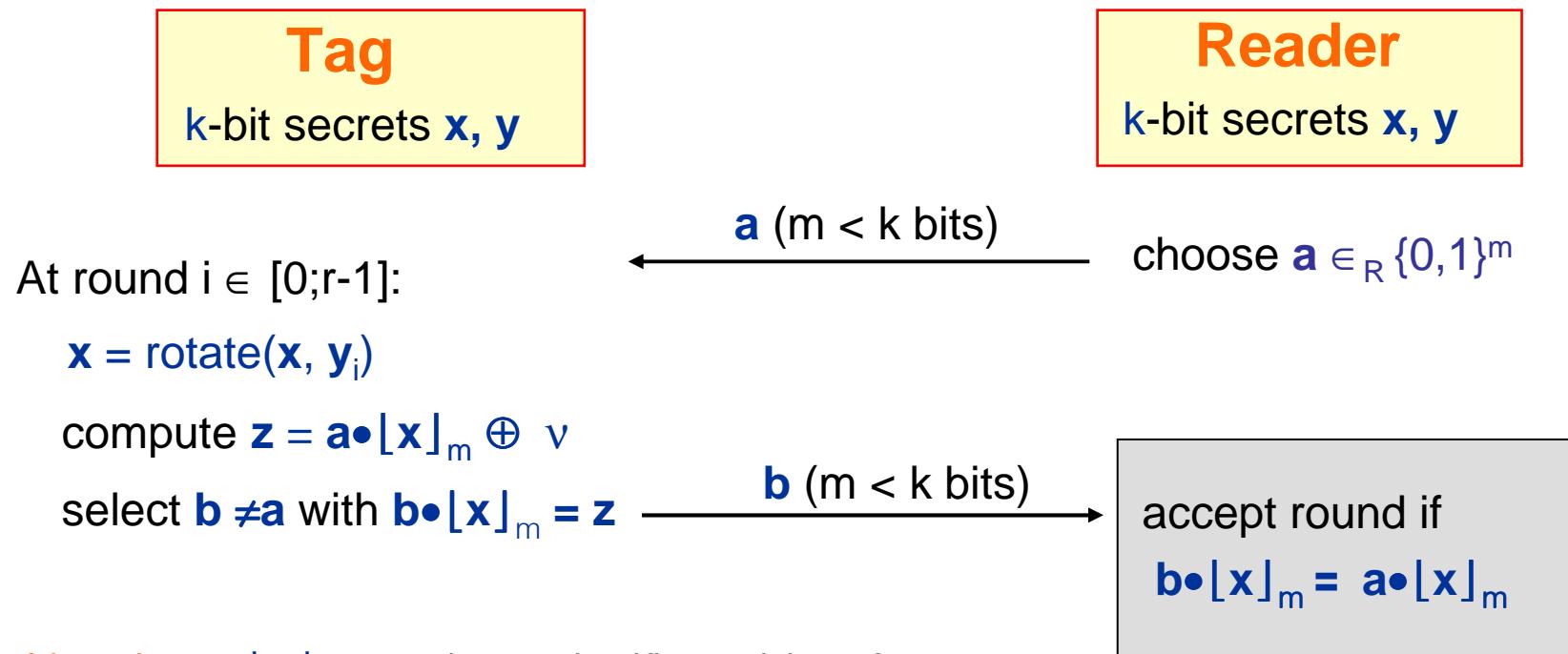
- To derive x : repeat the above procedure $|x|$ times
- To derive y : now trivial using a false tag (use constant b)
- To impersonate the tag: use x and y (or even x only).


Security models

- **DET model** (detection-based) used in security proofs of [JW],[KS]
 - **Phase 1:** adversary first interacts q times with a legitimate tag.
 - **Phase 2:** she interacts once with a reader to impersonate the tag.
- **GRS-MIM model** (GRS-like man in the middle)
 - **Phase 1:** adversary interacts with a legitimate tag and a legitimate reader during q authentication exchanges and can observe all messages:
 - she can **modify any message sent by the reader to the tag.**
 - she has access to the authentication **success/failure information.**
 - **Phase 2:** she interacts once with a reader to impersonate the tag.
- **MIM model**
 - Same as GRS-MIM except adversary can modify all tag-reader messages

(MIM security \Rightarrow GRS-MIM security \Rightarrow DET security)

HB-MP [Munilla and Peinado 07]


HB-MP': simplified version of HB-MP

Authentication is successful iff at most t rounds are rejected

HB-MP

Aim: immunity against passive and active attacks, including GRS-like attacks

Notation: $\lfloor x \rfloor_m = m$ least significant bits of x ;

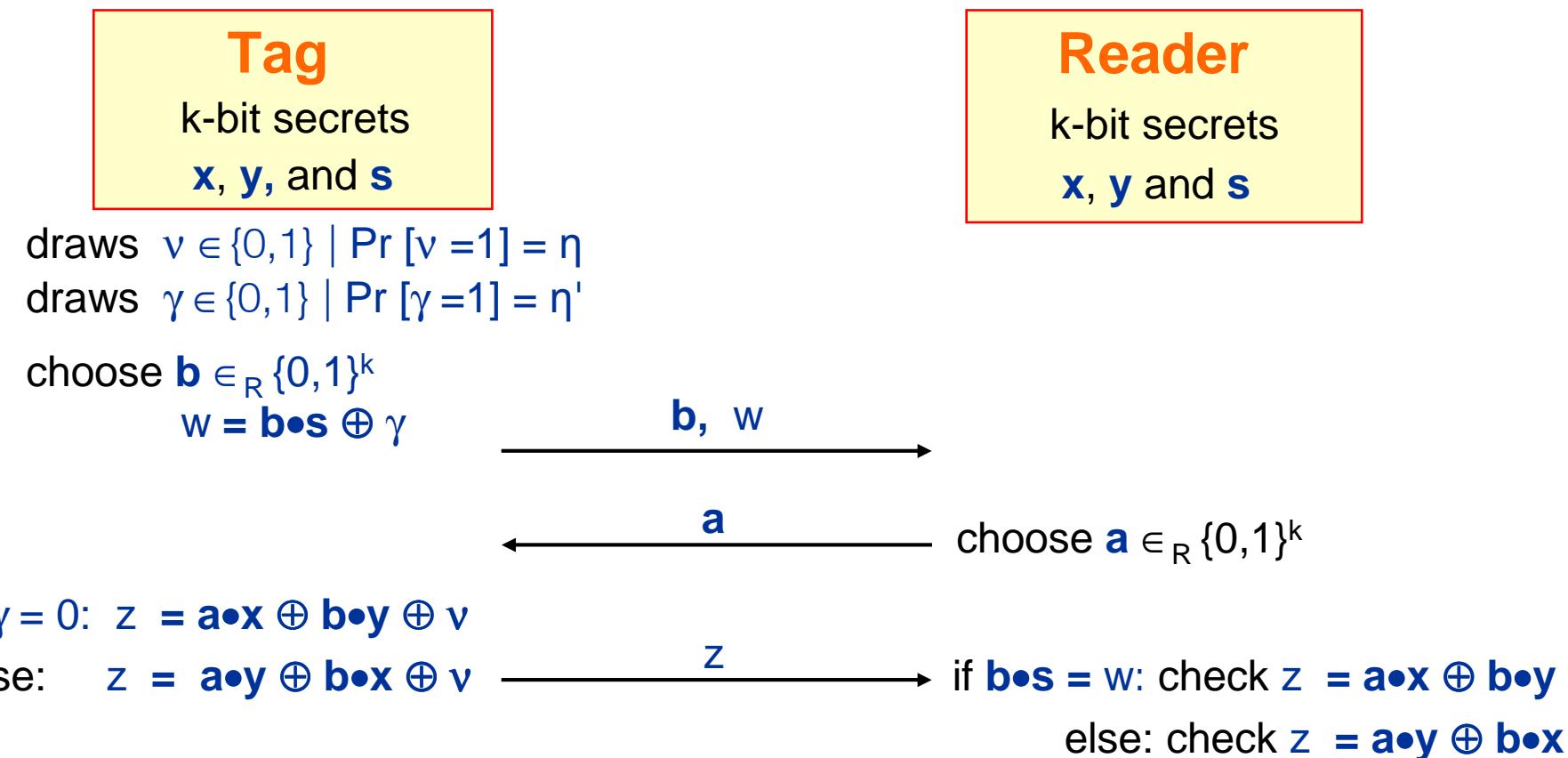
$\text{rotate}(x, p)$ = bitwise rotation of x by p bits to the left.

y_i = bit i of y ;

Authentication is successful iff at most t rounds are rejected

A passive attack against HB-MP

The verification equations can be written: $(a^i \oplus b^i) \bullet [x^i]_m = 0$


(where a^i , b^i , and x^i denote the values of a , b and x at round i .)

- **Step 1:** observation of one authentication exchange of a legitimate tag:
 - record (a^i, b^i) pairs or $a^i \oplus b^i$ values
- **Step 2:** impersonation of the tag:
 - on challenge a'^i answer b'^i such that $a'^i \oplus b'^i = a^i \oplus b^i$
i.e. $b'^i = a'^i \oplus a^i \oplus b^i$

The attack works exactly in the same way against HB-MP'.

HB* [Duc and Kim 07]

Aim: resistance to all active attacks, including GRS-like attacks

Authentication is successful iff at most t rounds are rejected

A MIM attack against HB* (1/2)

The attack is a close variant of the GRS attack against HB⁺.

At each round, the challenge vector \mathbf{a} is replaced by $\mathbf{a} \oplus \boldsymbol{\delta}$, and consequently:

- If $\gamma=0$: z is replaced by $z \oplus \boldsymbol{\delta} \bullet \mathbf{x}$
- If $\gamma=1$: z is replaced by $z \oplus \boldsymbol{\delta} \bullet \mathbf{y}$

The ratio between both events is governed by η' .

- 1 If η' is sufficiently small ($\eta' < \frac{t - \eta r}{r(1 - 2\eta)}$) the original HB⁺ attack still works.

The disturbed authentication is:

- likely to succeed if $\boldsymbol{\delta} \bullet \mathbf{x} = 0$
- unlikely to succeed if $\boldsymbol{\delta} \bullet \mathbf{x} \neq 0$.

- 2 Otherwise

The disturbed authentication is:

- likely to succeed if $\boldsymbol{\delta} \bullet \mathbf{x} = 0$ and $\boldsymbol{\delta} \bullet \mathbf{y} = 0$ (z is then never affected)
- unlikely to succeed if $\boldsymbol{\delta} \bullet \mathbf{x} \neq 0$ or $\boldsymbol{\delta} \bullet \mathbf{y} \neq 0$

A MIM attack against HB* (2/2)

Step 1: find lin. ind. values $\delta_1, \delta_2, \delta_{k-2}$ such that the authentication succeeds.

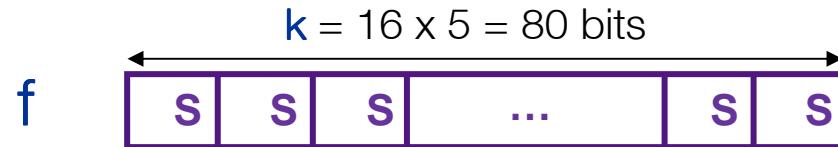
- with high proba. $(\delta_1, \delta_2, \delta_{k-2})$ is a basis of $\langle x, y \rangle^\perp$, i.e. $\langle \delta_1, \delta_2, \delta_{k-2} \rangle^\perp = \langle x, y \rangle$.
- we get the unordered set $\{c_1, c_2, c_3\} = \{x, y, x \oplus y\}$

Step 2: identify $x \oplus y$ in $\{c_1, c_2, c_3\}$

- query honest tag with $a = b$ at each round
- ⇒ $z = a \bullet (x \oplus y) \oplus v$ at each round
- $\#\{\text{rounds } | z = a \bullet c_i\}$ is maximal for $c_i = x \oplus y$

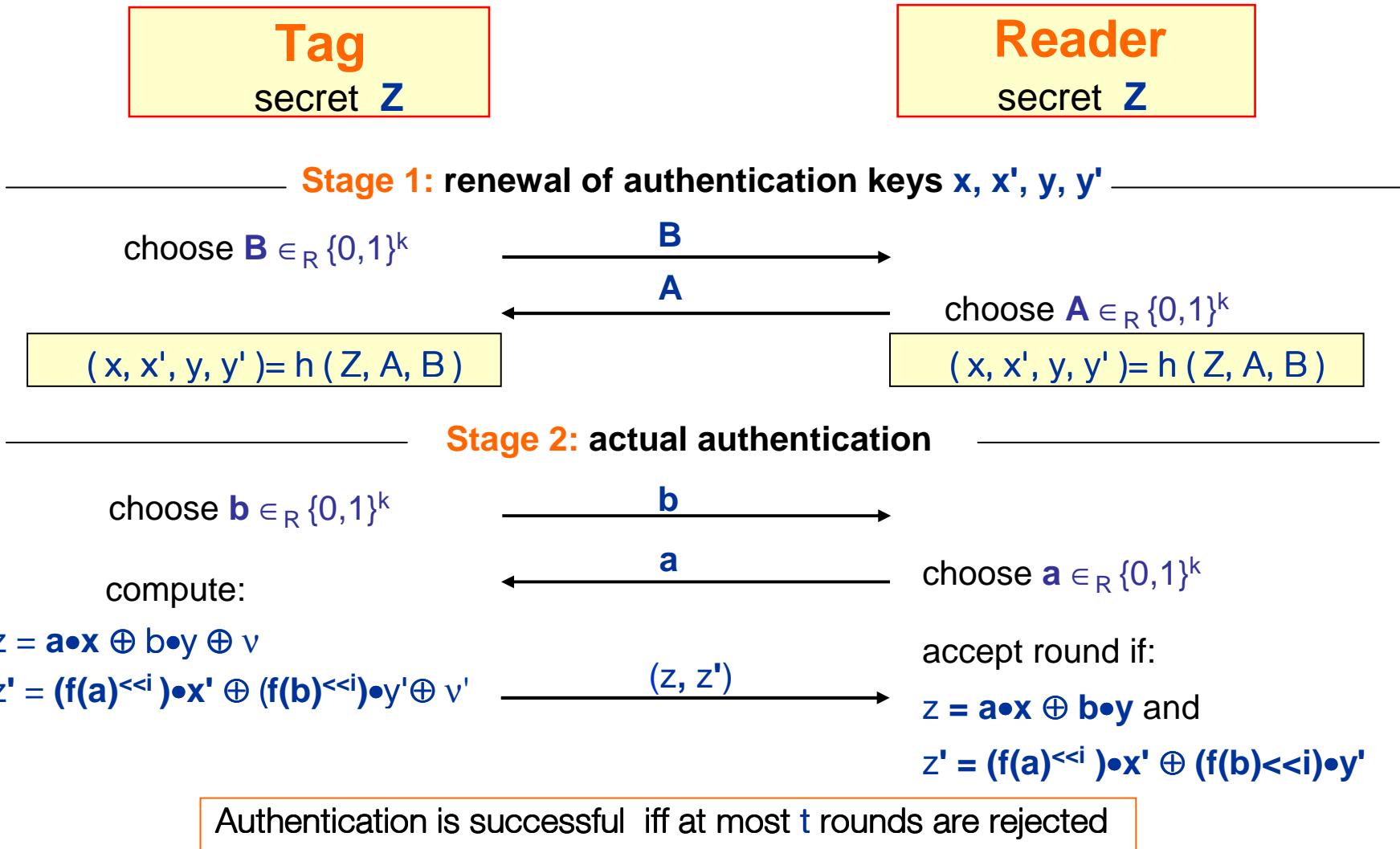
Step 3: first impersonation attempt with success proba. $\frac{1}{2}$

Step 4: later impersonation attempts have success proba. ≈ 1

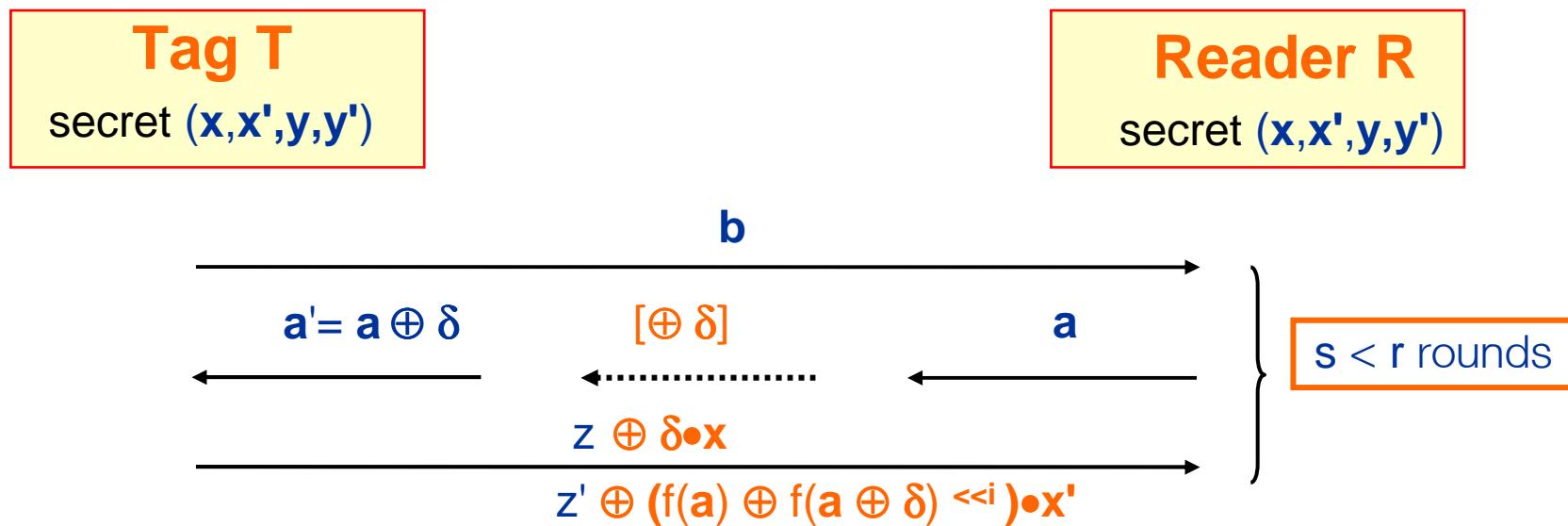

Low complexity: approximately 4k authentications required

HB⁺⁺ [Bringer, Chabanne, and Dottax 05]

Aim: keep HB⁺ security in restricted model and prevent MIM attacks


Outline:

- uses a **k**-bit to **k**-bit function **f** based on a [5-bit] s-box **S**


- 4 secret key vectors **x**, **x'**, **y**, **y'** instead of **x** and **y**
- 2 response bits instead of 1 at each round, namely (at round **i**)
 - $z = a \bullet x \oplus b \bullet y \oplus v$ as before
 - $z' = f(a) \ll i \bullet x' \oplus f(b) \ll i \bullet y' \oplus v'$ s-box and rotation by **i** bits
- **x**, **x'**, **y**, **y'** are renewed at each authentication

HB++ [Bringer, Chabanne, and Dottax 05]

Attack on HB⁺⁺ without key renewal

- Attack scenario almost identical to the GRS attack on HB⁺
- But the adversary only disturbs the challenge vectors of the $s < r$ first rounds using a fixed disturbance vector δ . Other rounds are not disturbed.

- If s is well chosen
 - $p_0 = \Pr[R \text{ accepts} \mid \delta \cdot x = 0]$ is non-negligible
 - $p_1 = \Pr[R \text{ accepts} \mid \delta \cdot x = 1]$ is negligible
 - therefore $\Pr[\delta \cdot x \neq 0 \mid R \text{ accepts}] = p_1/(p_0 + p_1)$ is very small.
- Example If $k=80, r=80, t=30, \eta=1/4$, for $s=40$:
 $\Pr[R \text{ accepts}] \approx 30\%$ and $\Pr[\delta \cdot x \neq 0 \mid R \text{ accepts}] \approx 0.007$

Detail of the function h [WH: KYS05]

- Inputs:

- $Z = (Z_1, \dots, Z_{48})$ 48 16-bit words = 768 bits
- $M = (A, B)$ 2 80-bit words = 160 bits
- $= (M_1, \dots, M_{10})$ 10 16-bit words

- Output:

- $h(Z, A, B) = \underbrace{(g_{Z_1 \dots Z_{10}}(M), g_{Z_3 \dots Z_{13}}(M), \dots, g_{Z_{39} \dots Z_{48}}(M))}_{20 \text{ 16-bit words}} = (x, x', y, y')$
- 4 80-bit words

- g is defined as follows:

$$g: \{0,1\}^{16 \times 10} \times \{0,1\}^{16 \times 10} \rightarrow \{0,1\}^{16} \quad \text{GF}(2^{16}) \text{ constant}$$

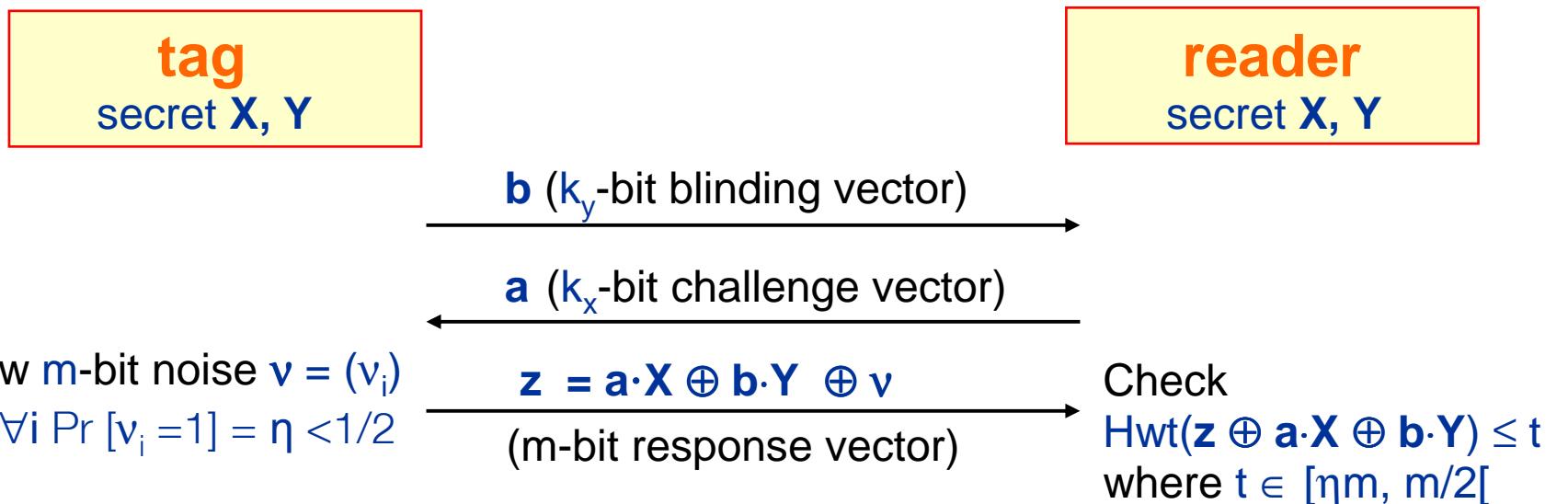
$$g_{K_1, \dots, K_{10}}(M_1, \dots, M_{10}) = \sum_{i=1}^5 (M_{2i-1} + K_{2i-1})(M_{2i} + K_{2i}) \cdot c_i$$

→ over $\text{GF}(2^{16})$: if (A, B) is known, each 16-bit component of $h(Z, A, B)$ is a known affine function of 15 unknown 16-bit values $Z_{2j-1}, Z_{2j}, Z_{2j-1}, Z_{2j}$

→ over $\text{GF}(2)$: if (A, B) is known, each bit of $h(Z, A, B)$ is a known affine function of $16 \times 15 = 240$ expanded key bits.

Attack on the complete HB⁺⁺ scheme

- **Step 1:** we disturb the authentication protocol with δ values that fit one single 16-bit word of \mathbf{x} (e.g. $\delta = (\delta_0, \dots, \delta_{15}, 0, \dots, 0)$
 - each successful authentication provides one equation $\delta \bullet \mathbf{x} \approx 0$ in one word of \mathbf{x}
i.e. one approximate equation in 240 expanded key bits
 - 5 low complexity LPN problems: 240 unknowns, $\epsilon < 1\%$
 - we derive the expanded key part allowing to derive \mathbf{x}
- **Step 2:** we derive the expanded key part allowing to derive \mathbf{x}'
 - we get and solve 5 additional LPN problems.
- **Step 3:** we record the quartets $(\mathbf{a}, \mathbf{b}, \mathbf{z}, \mathbf{z}')$ of a successful authentication, we can reuse the vectors \mathbf{b} and correct \mathbf{z} and \mathbf{z}' according to $\Delta \mathbf{a}$ to impersonate the tag.


Complexity estimate: if $k=80, r=80, t=30, \eta=1/4$, for $s=40, \epsilon \approx 1\%$

- Authentications needed: $4 \times 10 \times 2^{30} \approx 2^{35}$
- Complexity: $4 \times 2^{41} = 2^{44}$

RANDOM-HB[#]

Aim: render HB⁺ resistant to MIM attacks

- replace x by a random $k_x \times m$ binary matrix X
- replace y by a random $k_y \times m$ binary matrix Y
- authentication has now one single round

😊 Transmission costs and error rates become realistic

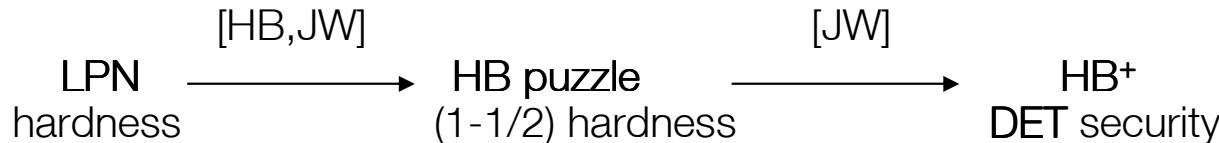
due to the better balance between challenge and response lengths

😊 Provable security against a larger class of attacks

😢 Storage requirements for matrices X and Y

→ solved by HB[#]

Security of RANDOM-HB[#]

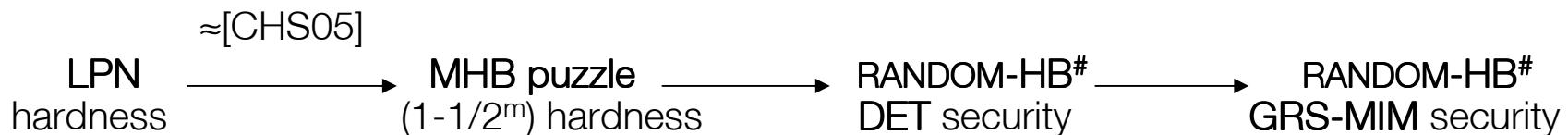

- HB⁺

HB puzzle

q k-bit random vectors \mathbf{a}_i

Given: q noisy bits $\mathbf{a}_i \cdot \mathbf{x}^t + \mathbf{v}_i$ where $\Pr[\mathbf{v}_i=1] = \eta < \frac{1}{2}$
a random challenge vector \mathbf{a}

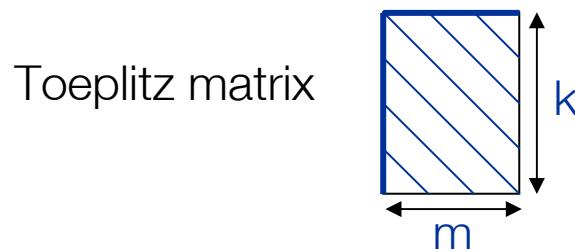
Guess $\mathbf{a} \cdot \mathbf{x}^t$



- Here:

MHB puzzle

q k-bit random vectors \mathbf{a}_i


Given: q noisy m-bit vectors $\mathbf{a}_i \cdot \mathbf{X} + \mathbf{v}_i$ where $\Pr[\mathbf{v}_{ij}=1] = \eta < \frac{1}{2}$
a random challenge vector \mathbf{a}

+ informal security argument in the general MIM model

HB[#] (1/2)

- **Definition:** a $k \times m$ matrix \mathbf{M} is a **Toeplitz matrix** iff it has constant coefficients on all upper left to bottom right diagonals.
→ \mathbf{M} is determined by the $k+m-1$ coefficients of column 1 and row 1

- HB[#] is identical to RANDOM-HB[#] (the tag's answer is still: $\mathbf{z} = \mathbf{a} \cdot \mathbf{X} \oplus \mathbf{b} \cdot \mathbf{Y} \oplus \mathbf{v}$)
... except \mathbf{X} and \mathbf{Y} are now **random binary Toeplitz matrices**.
 - low storage requirements: $k_x + k_y + m - 2$ bits instead of $(k_x + k_y)m$
 - efficient on tag computations

HB[#] (2/2)

Security

- **Conj:** the Toeplitz-MHB puzzle is hard and HB[#] is secure in the **DET** model
- **Th:** if HB[#] is secure in the DET model, then (under easy to meet conditions on the parameters set) it is also secure in the **GRS-MIM** model
- **Strong arguments** for HB[#] security in the **general MIM** model using the fact that the set of $k \times m$ Toeplitz matrices is a $1/2^m$ -balanced family of hash functions.

Parameter values for HB[#]

k_x	k_y	m	η	t	P_{FR}	P_{FA}	com. (bits)	stor. (bits)
80	512	1164	0.25	405	2^{-45}	2^{-83}	1756	2918
80	512	441	0.125	113	2^{-45}	2^{-83}	1033	1472

Conclusions

- $\text{HB}^\#$ attains a truly practical performance profile
- some further optimisations of $\text{HB}^\#$ might be of practical value:
 - test weight of noise vector \mathbf{v} before using it and reduce m
 - use larger noise level η and reduce k_Y ?
- the use of LPN and matricial variants (MHB /Toeplitz MHB) in symmetric cryptography deserves further exploration.