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Combination generators for additive stream ciphers
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Divide-and-conquer attack involving k£ constituent devices
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where Pr[f(Xl, cee Xn) = g(Xip cees sz)] > 5 .



Resilient functions

Definition A Boolean function f is t-resilient if

1
Prif(X1,..., Xn) = g(Xyp,..., X)) =5

for any k <t and for any function g of k variables.

The order of resiliency is the highest t such that f is t-resilient.

—— we have to consider t + 1 devices together.



Building parity-check relations [Johansson-Meier-Muller 06]

Property 1. xyx2...xs has period Th1I>...Ts.

Property 2. Let o(t) =Y 5 _;x; and

s
7T = Z c;T;, c; € {0,1}
=1

Then, for any t > 0,

Z o(t+ 1) =0.

TeT
Example. For o = x1 + x2:

O'(t) —|—0'(t—|—T1) —I—O'(t—I—Tz) —|—0'(t—|—T1 —|—T2) =0, Vt >0.



Building parity-check relations [Johansson-Meier-Muller 06]

Let o = g(xy5. -5 %;,).

For g = ;% m;(x;,, ..., z;, ), let us consider

m
T =3 ¢mi(T;y, ..., T;), ¢ € {0,1}
i—1

Then,

Z o(t+T1)=0.

TeT



Distinguishing attack [Johansson-Meier-Muller 06]

Let s = f(x1,...,Tn) Where

1
PrF (X1, s Xn) = 9(Xips .0 Xjy)] = S(1+€) with & > 0.

For g = ;" m;(x4, ..., T3, ) and

Z cim (Tyy s .. zk) c; € {0,1}
Then,

]_ 2m
Pr|) s(t+7)=0] > S(L+e™).
TET 1
Complexity:
2m—|—1

Time complexity ~ e~ x 2™

2m—|—1

Data complexity >~ ™ + g(Til, ORI Tik)



Decimation by the period of a sequence [Hell-Johansson 06]

/
— . m . . . i

/
m

T =) emi(Tyy, - T;,), ¢ € {0,1}
i—1

Then,
1 m/
2
Pr[Y st+71)= > zi (t+7)] > 5(1—|—€ ),
T€T’ T’
implying
i ] ]_ 2m’
Pri > s(tT; +7)= cst| > 5(1 +e? ),
€T’ i
Complexity:
/
Time complexity ~ e—2" i x 2m/
_2m’—|—1

Data complexity ~ ¢ Tij + g'(Tq:l, I Tik)



Initial state recovery [Johansson-Meier-Muller 06]

/
For g = :;:1 T, + > imy mi(xg -0y x5, ), let us consider

m/
T =) emi(Tyy, ..., T;,), ¢ €{0,1}
i—1

Then,
S 1 zm,
PrY st+7)+ > > i (t+7)=0] > 5(1+e ).
T€T! 1=11&€7T’
Attack:
Perform an exhaustive search for the initial states of Dev 21,...,15.

For each possible initial state, compute the parity-check equations.

Complexity:

_2m’+1

Data complexity ~ € 2In2(L;; + ...+ L;,) + 4 (T;5 ..., Ty, )

2" 2(L, + ...+ L) x 2™ x 2R Tt

9

Time complexity ~ ¢



Achterbahn-80 [Gammel-G&ttfert-KnifflerO6]

11 NLFSRs of length L; = 21 + ¢ and of period T; = 2li 1,1 <4 <11.
f. 6-resilient combining function of degree 4:

r1 + 22 + 23 + 24 + 5 + 27 + g + 11 + T2x10 + T2x11 + T4x8 T+
T5T6 T TeLg T T6T10 T TeX11 + L7T8 + T8T9 + £gx10 + T9T10 + T9Z11 T+
T1T2T8 + T1T4T10 T T1T4T11 + T1L8T9 + T1L9T10 + £129T11 + T2x32g +
T2TATS + T2L4T10 + T2T4%11 + T2T7Lg + T2T8T10 + T2T8T11 + T2T9T10 T
T2TYT11 + T3TATG + TITTY + T4T7Lg 1 T4Lgx9 + T5Tex8 + T5TET10 T
T5T6T11+T6L8L10TL6T8L11 TL7T8TY+TELYT10TL8T9T11 T X1X2T3%8+
T1X2T7LG+ L1X3T5LZ+ T1T3LELY T T1T4L8T10 T L1L428T11 T T1T5L7Tg+
T1T7T8TY+T1TTYT10 T T1T8L9T11 T+ T2X3XT428 T T 2T3T5Tg T L2L4T7Xg+
TRXTATGL10TLT2TATEL 11 TXT2TEL7TZFT2LTGLYLT 10T T 2LGLYT11 TL3L4T8T9 T
TATTTLY + TELELZT10 T T5TELET11
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First attack against Achterbahn-80

Quadratic approximation:

—5
x] + x2 + 7 + x3T10 + T4T9, € =2 .

T = {c1T3T10 + c2TyTy, c1,c2 € {0,1}}
e Decimation by Tx
e Exhaustive search on R1 and R2.
For o = o1 + 9,
s(tT7) + s(tT7 + T3T10) + s(tT7 + TyTg) + s(tT7 + T3T10 + TyTo) =
o(tTy) + o(tTy + T3T1g) + o(tTh + TyTy) + o (tThy + T3T19 + TyT9) + cst

with bias > 2720,

Data complexity = 2%  Time complexity = 2°1 .

11



First attack against Achterbahn-80 [Hell-Johansson06]

The exact bias of

s(tT7) + s(tT7 + T3Tho) + s(tT7 + TyTo) + s(tT7 + T3Tyo + TyTh) =
o(tTy) + o(tTh + T3T1g) + o(tT7 + TyTy) + o (tTy + T3T19 + TyT9) + cst

is not 220 put 2712

Then,

258.3

Data complexity = Time complexity = 275

12



Second attack against Achterbahn-80 [Naya-Plasencia06]

Linear approximation:

r1 + @2 + x7 + (23 + 10) + (T4 + T9), € =275,

T = {c1T3T10 + c2TyTy, ci1,c2 € {0,1}}
e Decimation by 1%
e Exhaustive search on R1 and R2.
For o = 1 + x9,

s(tT7) + s(tTy + T3T19) + s(tT7 + TyTg) + s(tT7 + T3T1g + TyTy) =
o(tTy) + o(tTh + T3T1g) + o(tTh + TyTy) + o (tThy + T3T19 + TyT9) + cst

with bias > 2712,

Data complexity = 2°83  Time complexity = 27 .

13



Related issues

e Is the exact bias always given by the bias of the linear approxima-
tion?

e Can we get a better result with higher degree approximations?

General problem:

Compute
dg (f,Bn(k)) = distance of f to the Boolean functions depending
on k variables only,

and find some properties of the best approximation.

14



Walsh transform of a Boolean function

Imbalance of a Boolean function:

F(H) = Y )/ =27 —2uwi(f) .

xeFy
Linear functions: Pag ! TH——a- T

Walsh (Fourier) spectrum of f:Fy — Fo

[F(f+va) = Y (-1)f@Faz 4 ¢ pp)
mEFg

Nonlinearity of f : F’g — Fo
Hamming distance of f to {pq + €, a € F3,e € Fa}.

L L(f) where £(f) = max [F(f + pa)l

15



Decomposition with respect to a subspace

V' . subspace of F§ of dimension k

The cosets of V: a+V, a € W where V X W =F3 .

The decomposition of f with respect to V is the sequence (hq,..., hzn_k)
of restrictions of ftoa; +V, a; € W,

hi = fa;+v> hi:F5 — Fa.

Example. n =4 and V = {(x1,x2,x3,T4) € F‘zl, x1 = x9 = 0}.

zreFi v [(@1,0,0,00+V][(0,1,0,0) 4+ V |(1,1,0,0) + V
f(z)y lol100| 0011 | 0101 | 0111

16



Distance to B,,(K) by means of decompositions

Let K C {1,...

,n}. Let V = <€i,i € K) and W = <€,,;,’i €K>

The distance of f to the functions depending on x;,7 € K only is

Moreover, the best approximation g of f is given by

if F(fatrw) >0,
it F(farw) <O

d(f, B () =21 = S | F(Farw)l

Va € V, g(a) :{

0
1

acV

Example. K = {1,2} and W = {(x1,x2,x3,T4) € F%, xr1 = xg = 0}.

r € F5 w |(1,0,0,0)+ W |(0,1,0,0) + W |(1,1,0,0) + W

f(x) (0100 0011 0101 0111
F(fatrw) 2 0 0 —2

g(a) 0 Oorl 0orl 1

— dg(f,Bs({1,2})) :23_4/2:6 .

17



Distance to B, (k) and nonlinearity

Theorem Let K C {1,...,n} and let V = (e;,i € K).

DNo| =

1
d(f, Ba(K)) 2 2" = | 3 FAF + ¢a)
acV

Most notably,
k
dp(f, Bn(k)) > 2"t —2271L(F)

where L(f) = maxq |F(f + va)l-

There is no accurate approximation of f by a function of a small
number of variables if f has a high nonlinearity.

18



Approximation of a resilient function

Proposition [Xiao-Massey 88]
A Boolean function f of m variables is t-resilient if and only if

Va € Fy, 0 < wg(a) <t, F(f+va)=0.

Theorem [C.-Trabbia 00] [Zhang 00]
Let f be t-resilient function of m variables. Then, for any K of
sizet+ 1,

| F(f + ¢K)

2
where o = > ;ck T and the best approximation is achieved by the
affine function

dH(fa B’n(K)) — 2n—1 —

$K + €= Zmi—l—s, e € {0,1} .
€K

19



Theorem Let f be t-resilient function of n variables.

k 2
dpr(f. B (k) > vt = ) [ 50 (k)

2 i\
Example. f: 6-resilient combining function of Achterbahn-80
11 variables, L(f) = 256.
dp(f, B11(7)) = 896 = ¢ = 277

dp(f,B11(8)) > 640 = ¢ < 3 x 277
(exact value: e =3 x 274 .

20



Bias of parity-checks involving (t 4+ 1) variables

Theorem [C., Naya-Plasencia 07]
Let f be t-resilient function. The bias of any parity-check equation

built from a (¢ + 1)-variable linear approximation of f with bias € is
eM \where M is the number of terms in the parity-check equation.

Achterbahn-128: combining function of 13 variables, 8-resilient.

Cubic approximation:

xg + 2 + 4 + 9 + T7T19 + T1T3T12 WIith bias 26,
Parity-check relation: for o = g + 2 + x4,
s(tTy) +s(tTo+T7T10) +s(tTo+T1T3T12) +s(tTog+T7T10+T113T12) =

o(tTy)+o(tTo+T7T10)+o(tTo+T1T3T12)+o(tTo+T7T10+T1T3T12)+
cst.

It can be derived from

(1 + ®3 + x12) + (7 + *10) + T9 + TO + T2 + T4 With bias e = 277
4_ 5-12

——= EXxact bias of the parity-check relation = ¢
21



Distance to B,(n — 1)

Approximation by a function of n — 1 variables

d(f,Ba({1, -} \ {i}) = 2" — _F(D..f)
where De.f : x — f(x + ;) + f(x).

22



Distance to B, (n — 2)

Approximation by a function of n — 2 variables

dg(f,Bn({1,...,n}\ {i,7})) = on—1 _ on—4 _ F(zezf) B ]:(1)863-]:)

8 16

Example. f: 6-resilient combining function of Achterbahn-80
11 variables, L(f) = 256.

e by computing all F(De,f), 1 <1 <11, dg(f,B11(10)) = 128.

o by computing all F(De;+e;f) and F(De,De,f): du(f,B11(9)) = 704
= e=5x2"1%
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Approximation of a function satisfying the propagation criterion

Definition [Preneel et al 90]
f satisfies the propagation criterion of degree t (PC(t)) if

Va € Fy, 1 < wgl(a) <t, F(Dgf)=0.

Theorem Let f be a function of n variables satisfying PC(t).

1
2

k n=k g
dn(£,5,00) 2 2271 =25 [on i) Y ()

i=t+1 g
where M(f) is the absolute indicator of f: M(f) = max,q |F(Def)].

Most notably, if K > n —t,

n+k
d(f, Bn(k)) > 271 — 2" —1

24



Bent functions

Let f be a function of n variables.

L(f) = max |F(f + pa)| > 22

with equality if and only if f is bent (n even).
For any bent function f, F(f + ¢«) takes 2 values only: 427

Dual of a bent function
The dual of f, f, is the Boolean function of n variables defined by

F(f +pa) =221 | aeFp.

25



Approximation of a bent function

Theorem
Let f be a bent function of n variables.

Let K C {1,...,n} of size k.
n—k
dp (f,Bn(K)) =21 —272 1

where equality holds if and only if k is even and the restriction of the
dual function, f, to (e;,©2 € K) is bent.

26



Cconclusions

If a function f lies at high distance to the set of all affine functions,

then it lies at high distance to all functions depending on a small
subset of its input variables.

For a t-resilient combining function, the bias of any parity-check re-

lation involving (t + 1) variables is derived from the bias of the corre-
sponding linear approximation.
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