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Combination generators for additive stream ciphers
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where each xi has period Ti.
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Divide-and-conquer attack involving k constituent devices
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Resilient functions

De�nition A Boolean function f is t-resilient if

Pr[f(X1, . . . , Xn) = g(Xi1, . . . , Xik)] =
1

2

for any k ≤ t and for any function g of k variables.

The order of resiliency is the highest t such that f is t-resilient.

=⇒ we have to consider t + 1 devices together.
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Building parity-check relations [Johansson-Meier-Muller 06]

Property 1. x1x2 . . . xs has period T1T2 . . . Ts.

Property 2. Let σ(t) =
∑s

i=1 xi and

T =





s∑

i=1

ciTi, ci ∈ {0, 1}


.

Then, for any t ≥ 0,
∑

τ∈T
σ(t + τ ) = 0.

Example. For σ = x1 + x2:

σ(t) + σ(t + T1) + σ(t + T2) + σ(t + T1 + T2) = 0, ∀t ≥ 0.
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Building parity-check relations [Johansson-Meier-Muller 06]

Let σ = g(xi1, . . . , xik).

For g =
∑m

i=1 mi(xi1, ..., xik), let us consider

T =





m∑

i=1

cimi(Ti1, ..., Tik), ci ∈ {0, 1}


 .

Then,
∑

τ∈T
σ(t + τ ) = 0.
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Distinguishing attack [Johansson-Meier-Muller 06]

Let s = f(x1, . . . , xn) where

Pr[f(X1, . . . , Xn) = g(Xi1, . . . , Xik)] =
1

2
(1 + ε) with ε > 0.

For g =
∑m

i=1 mi(xi1, ..., xik) and

T =





m∑

i=1

cimi(Ti1, ..., Tik), ci ∈ {0, 1}


 .

Then,

Pr


 ∑

τ∈T
s(t + τ ) = 0


 ≥ 1

2
(1 + ε2m

).

Complexity:
Time complexity ' ε−2m+1 × 2m

Data complexity ' ε−2m+1
+ g(Ti1, . . . , Tik)
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Decimation by the period of a sequence [Hell-Johansson 06]

For g = xij +
∑m′

i=1 mi(xi1, ..., xik), let us consider

T ′ =





m′∑

i=1

cimi(Ti1, ..., Tik), ci ∈ {0, 1}


 .

Then,

Pr[
∑

τ∈T ′
s(t + τ ) =

∑

τ∈T ′
xij(t + τ )] ≥ 1

2
(1 + ε2m′

),

implying

Pr


 ∑

τ∈T ′
s(tTij + τ ) = cst


 ≥ 1

2
(1 + ε2m′

),

Complexity:

Time complexity ' ε−2m′+1 × 2m′

Data complexity ' ε−2m′+1
Tij + g′(Ti1, . . . , Tik)
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Initial state recovery [Johansson-Meier-Muller 06]

For g =
∑s

j=1 xij +
∑m′

i=1 mi(xi1, ..., xik), let us consider

T ′ =





m′∑

i=1

cimi(Ti1, ..., Tik), ci ∈ {0, 1}


 .

Then,

Pr[
∑

τ∈T ′
s(t + τ ) +

s∑

j=1

∑

τ∈T ′
xij(t + τ ) = 0] ≥ 1

2
(1 + ε2m′

).

Attack:
Perform an exhaustive search for the initial states of Dev i1, . . . , is.
For each possible initial state, compute the parity-check equations.

Complexity:

Data complexity ' ε−2m′+1
2 ln 2(Li1 + . . . + Lis) + g′(Ti1, . . . , Tik)

Time complexity ' ε−2m′+1
2 ln 2(Li1 + . . . + Lis) × 2m′ × 2Li1

+...+Lis
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Achterbahn-80 [Gammel-Göttfert-Kni�er06]

11 NLFSRs of length Li = 21 + i and of period Ti = 2Li − 1, 1 ≤ i ≤ 11.

f : 6-resilient combining function of degree 4:

x1 + x2 + x3 + x4 + x5 + x7 + x9 + x11 + x2x10 + x2x11 + x4x8 +

x5x6 + x6x8 + x6x10 + x6x11 + x7x8 + x8x9 + x8x10 + x9x10 + x9x11 +

x1x2x8 +x1x4x10 +x1x4x11 +x1x8x9 +x1x9x10 +x1x9x11 +x2x3x8 +

x2x4x8+x2x4x10+x2x4x11+x2x7x8+x2x8x10+x2x8x11+x2x9x10+

x2x9x11 + x3x4x8 + x3x8x9 + x4x7x8 + x4x8x9 + x5x6x8 + x5x6x10 +

x5x6x11+x6x8x10+x6x8x11+x7x8x9+x8x9x10+x8x9x11+x1x2x3x8+

x1x2x7x8+x1x3x5x8+x1x3x8x9+x1x4x8x10+x1x4x8x11+x1x5x7x8+

x1x7x8x9+x1x8x9x10+x1x8x9x11+x2x3x4x8+x2x3x5x8+x2x4x7x8+

x2x4x8x10+x2x4x8x11+x2x5x7x8+x2x8x9x10+x2x8x9x11+x3x4x8x9+

x4x7x8x9 + x5x6x8x10 + x5x6x8x11
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First attack against Achterbahn-80

Quadratic approximation:
x1 + x2 + x7 + x3x10 + x4x9, ε = 2−5.

T = {c1T3T10 + c2T4T9, c1, c2 ∈ {0, 1}}
• Decimation by T7

• Exhaustive search on R1 and R2.

For σ = x1 + x2,
s(tT7) + s(tT7 + T3T10) + s(tT7 + T4T9) + s(tT7 + T3T10 + T4T9) =

σ(tT7) + σ(tT7 + T3T10) + σ(tT7 + T4T9) + σ(tT7 + T3T10 + T4T9) + cst

with bias ≥ 2−20.

Data complexity = 274 Time complexity = 291 .
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First attack against Achterbahn-80 [Hell-Johansson06]

The exact bias of
s(tT7) + s(tT7 + T3T10) + s(tT7 + T4T9) + s(tT7 + T3T10 + T4T9) =

σ(tT7) + σ(tT7 + T3T10) + σ(tT7 + T4T9) + σ(tT7 + T3T10 + T4T9) + cst

is not 2−20 but 2−12.

Then,

Data complexity = 258.3 Time complexity = 275 .
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Second attack against Achterbahn-80 [Naya-Plasencia06]

Linear approximation:
x1 + x2 + x7 + (x3 + x10) + (x4 + x9), ε = 2−3.

T = {c1T3T10 + c2T4T9, c1, c2 ∈ {0, 1}}
• Decimation by T7

• Exhaustive search on R1 and R2.

For σ = x1 + x2,

s(tT7) + s(tT7 + T3T10) + s(tT7 + T4T9) + s(tT7 + T3T10 + T4T9) =

σ(tT7) + σ(tT7 + T3T10) + σ(tT7 + T4T9) + σ(tT7 + T3T10 + T4T9) + cst

with bias ≥ 2−12.

Data complexity = 258.3 Time complexity = 275 .
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Related issues

• Is the exact bias always given by the bias of the linear approxima-
tion?

• Can we get a better result with higher degree approximations?

General problem:

Compute
dH(f, Bn(k)) = distance of f to the Boolean functions depending

on k variables only,

and �nd some properties of the best approximation.
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Walsh transform of a Boolean function

Imbalance of a Boolean function:

F(f) =
∑

x∈Fn
2

(−1)f(x) = 2n − 2wt(f) .

Linear functions: ϕa : x 7−→ a · x

Walsh (Fourier) spectrum of f : Fn
2 → F2

{F(f + ϕa) =
∑

x∈Fn
2

(−1)f(x)+a·x, a ∈ Fn
2

}

Nonlinearity of f : Fn
2 → F2

Hamming distance of f to {ϕa + ε, a ∈ Fn
2 , ε ∈ F2}.

2n−1 − 1

2
L(f) where L(f) = max

a
|F(f + ϕa)| .
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Decomposition with respect to a subspace

V : subspace of Fn
2 of dimension k

The cosets of V : a + V, a ∈ W where V × W = Fn
2 .

The decomposition of f with respect to V is the sequence (h1, . . . , h2n−k)

of restrictions of f to ai + V , ai ∈ W ,

hi = fai+V , hi : Fk
2 7−→ F2 .

Example. n = 4 and V = {(x1, x2, x3, x4) ∈ F4
2, x1 = x2 = 0}.

x ∈ F4
2 V (1, 0, 0, 0) + V (0, 1, 0, 0) + V (1, 1, 0, 0) + V

f(x) 0 1 0 0 0 0 1 1 0 1 0 1 0 1 1 1
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Distance to Bn(K) by means of decompositions

Let K ⊂ {1, . . . , n}. Let V = 〈ei, i ∈ K〉 and W = 〈ei, i 6∈ K〉.
The distance of f to the functions depending on xi, i ∈ K only is

dH(f, Bn(K)) = 2n−1 − 1

2

∑

a∈V

|F(fa+W )| .

Moreover, the best approximation g of f is given by

∀a ∈ V, g(a) =

{
0 if F(fa+W ) > 0,

1 if F(fa+W ) < 0

Example. K = {1, 2} and W = {(x1, x2, x3, x4) ∈ F4
2, x1 = x2 = 0}.

x ∈ F4
2 W (1, 0, 0, 0) + W (0, 1, 0, 0) + W (1, 1, 0, 0) + W

f(x) 0 1 0 0 0 0 1 1 0 1 0 1 0 1 1 1

F(fa+W ) 2 0 0 −2

g(a) 0 0 or 1 0 or 1 1

=⇒ dH(f, B4({1, 2})) = 23 − 4/2 = 6 .
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Distance to Bn(k) and nonlinearity

Theorem Let K ⊂ {1, . . . , n} and let V = 〈ei, i ∈ K〉.

dH(f, Bn(K)) ≥ 2n−1 − 1

2


 ∑

α∈V

F2(f + ϕα)




1
2

.

Most notably,

dH(f, Bn(k)) ≥ 2n−1 − 2
k
2−1L(f)

where L(f) = maxa |F(f + ϕa)|.

There is no accurate approximation of f by a function of a small
number of variables if f has a high nonlinearity.
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Approximation of a resilient function

Proposition [Xiao-Massey 88]
A Boolean function f of n variables is t-resilient if and only if

∀α ∈ Fn
2 , 0 ≤ wH(α) ≤ t, F(f + ϕα) = 0 .

Theorem [C.-Trabbia 00] [Zhang 00]
Let f be t-resilient function of n variables. Then, for any K of
size t + 1,

dH(f, Bn(K)) = 2n−1 − |F(f + ϕK)|
2

where ϕK =
∑

i∈K xi, and the best approximation is achieved by the
a�ne function

ϕK + ε =
∑

i∈K

xi + ε, ε ∈ {0, 1} .

19



Theorem Let f be t-resilient function of n variables.

dH(f, Bn(k)) ≥ 2n−1 − L(f)

2




k∑

i=t+1

(
k

i

)


1
2

Example. f : 6-resilient combining function of Achterbahn-80
11 variables, L(f) = 256.

dH(f, B11(7)) = 896 =⇒ ε = 2−3

dH(f, B11(8)) ≥ 640 =⇒ ε ≤ 3 × 2−3

(exact value: ε = 3 × 2−4) .
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Bias of parity-checks involving (t + 1) variables

Theorem [C., Naya-Plasencia 07]
Let f be t-resilient function. The bias of any parity-check equation
built from a (t + 1)-variable linear approximation of f with bias ε is
εM where M is the number of terms in the parity-check equation.

Achterbahn-128: combining function of 13 variables, 8-resilient.

Cubic approximation:
x0 + x2 + x4 + x9 + x7x10 + x1x3x12 with bias 2−6.

Parity-check relation: for σ = x0 + x2 + x4,
s(tT9)+s(tT9+T7T10)+s(tT9+T1T3T12)+s(tT9+T7T10+T1T3T12) =
σ(tT9)+σ(tT9+T7T10)+σ(tT9+T1T3T12)+σ(tT9+T7T10+T1T3T12)+
cst.

It can be derived from
(x1 + x3 + x12) + (x7 + x10) + x9 + x0 + x2 + x4 with bias ε = 2−3

=⇒ Exact bias of the parity-check relation = ε4 = 2−12.
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Distance to Bn(n − 1)

Approximation by a function of n − 1 variables

dH(f, Bn({1, . . . , n} \ {i})) = 2n−2 − 1

4
F(Deif)

where Deif : x 7→ f(x + ei) + f(x).
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Distance to Bn(n − 2)

Approximation by a function of n − 2 variables

dH(f, Bn({1, . . . , n} \ {i, j})) = 2n−1 − 2n−4 − F(Deif)

8
−

F(Dejf)

8

−
F(Dei+ej

f)

8
+

F(DeiDejf)

16

Example. f : 6-resilient combining function of Achterbahn-80
11 variables, L(f) = 256.

• by computing all F(Deif), 1 ≤ i ≤ 11, dH(f, B11(10)) = 128.

• by computing all F(Dei+ej
f) and F(DeiDejf): dH(f, B11(9)) = 704

=⇒ ε = 5 × 2−4.
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Approximation of a function satisfying the propagation criterion

De�nition [Preneel et al 90]
f satis�es the propagation criterion of degree t (PC(t)) if

∀a ∈ Fn
2 , 1 ≤ wH(a) ≤ t, F(Daf) = 0 .

Theorem Let f be a function of n variables satisfying PC(t).

dH(f, Bn(k)) ≥ 2n−1 − 2
k
2−1


2n + M(f)

n−k∑

i=t+1

(
k

i

)


1
2

where M(f) is the absolute indicator of f : M(f) = maxe 6=0 |F(Def)|.
Most notably, if k ≥ n − t,

dH(f, Bn(k)) ≥ 2n−1 − 2
n+k

2 −1 .
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Bent functions

Let f be a function of n variables.

L(f) = max
α

|F(f + ϕα)| ≥ 2
n
2

with equality if and only if f is bent (n even).

For any bent function f , F(f + ϕα) takes 2 values only: ±2
n
2 .

Dual of a bent function
The dual of f , f̃ , is the Boolean function of n variables de�ned by

F(f + ϕα) = 2n/2(−1)f̃(α) , α ∈ Fn
2 .
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Approximation of a bent function

Theorem
Let f be a bent function of n variables.

Let K ⊂ {1, . . . , n} of size k.

dH(f, Bn(K)) ≥ 2n−1 − 2
n−k

2 −1

where equality holds if and only if k is even and the restriction of the
dual function, f̃ , to 〈ei, i ∈ K〉 is bent.
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Conclusions

If a function f lies at high distance to the set of all a�ne functions,
then it lies at high distance to all functions depending on a small
subset of its input variables.

For a t-resilient combining function, the bias of any parity-check re-
lation involving (t + 1) variables is derived from the bias of the corre-
sponding linear approximation.
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