

New SHA-1 Collision Attacks, and Applications

Florian Mendel, Christian Rechberger, Vincent Rijmen

Echternach, 01/2008

Institute for Applied Information Processing and Communications (IAIK) - Krypto Group

Faculty of Computer Science Graz University of Technology

What happened so far?

Current Status of SHA-1

- Differential collision attacks
 - Wang et al., 2005: 2⁶⁹
 - Joux and Peyrin, 2007: claim 2⁵ improvement over x
 - Wang et al.: 2⁶³, (2⁶²?), unpublished
 - Mendel, Rechberger, Rijmen: 2^{60.x}, unpublished

- Preimage Attacks
 - Reuse of collision attacks?
 - Dedicated attacks?

Current Status of SHA-1

- Differential collision attacks
 - Wang et al., 2005: 2⁶⁹
 - Joux and Peyrin, 2007: claim 2⁵ improvement over x
 - Wang et al.: 2⁶³, (2⁶²?), unpublished
 - Mendel, Rechberger, Rijmen: 2^{60.x}, unpublished

- Preimage Attacks
 - Reuse of collision attacks?
 - Dedicated attacks?

Outline of SHA-style Hash Functions

Effect of a single bit flip

Differential Attack on SHA-1

Standard 2-block approach

Summary of our new techniques

- Efficiently control bits in state
 up to step 31 (best before was 25)
- Distribute workload3 blocks (instead of 2 blocks)
- Number of distinct attacks
 millions of attacks (instead of a single one)
- Fine grained optimization model#steps (instead of #trials)

Differential Attack on SHA-1

Differential Attack on SHA-1

Equations in:Message bitsState bits

Using these patterns in practice

Compatible with main differential, and also to each other

How?

- Using the flexibility of the characteristic generator of De Cannière and Rechberger:
 - Used to demonstrate meaningful collisions [DR06]
 - Used in the boomerang approach [JP07]
 - Also here.

Summary of our new techniques

- Efficiently control bits in state
 up to step 31 (best before was 25)
- Distribute workload

3 blocks (instead of 2 blocks)

- Number of distinct attacks
 millions of attacks (instead of a single one)
- Fine grained optimization model#steps (instead of #trials)

Source of degrees of freedom

160

Summary of our new techniques

- Efficiently control bits in state
 up to step 31 (best before was 25)
- Distribute workload3 blocks (instead of 2 blocks)
- Number of distinct attacks
 millions of attacks (instead of a single one)
- Fine grained optimization model#steps (instead of #trials)

Degrees of freedom

Piling up collision attacks

Generic principle, applicable if degrees of freedom are limiting factor for improvements

Resulting performance is the average performance weighted with the respective search space size

Piling up collision attacks: Example

Piling up collision attacks: Example

freedom: 2⁷⁰

prob. per trial: 2-70

freedom:
2⁴⁰

prob. per trial:
2⁻⁵⁵

attack?

Piling up collision attacks: Example

prob. per trial: 2⁻⁷⁰

Sum of freedom: 260

Weighted average probability per trial: 2⁻⁶⁰

Degrees of freedom

Summary of our new techniques

- Distribute workload
 - 3 blocks (instead of 2 blocks)
- Efficiently control bits in state
 up to step 31 (best before was 25)
- Number of distinct attacks
 millions of attacks (instead of a single one)
- Fine grained optimization model#steps (instead of #trials)

Implementation of attacks

- Attack details are very intricate and complicated
- Only an actual implementation can rule out oversights

Reduced variants of SHA-1 considered in the past:

- 2005: 40 steps [BC05]
- 2005: 58 steps [WYY05,SPI07]
- 2006: 64 steps [DR06]
- 2007: 70 steps [DMR07,JP07]

First attempt on full SHA-1

New rough estimate: ~260.x simple hash

We recently started a distributed computing effort:

URL: http://boinc.iaik.tugraz.at

Measures to prevent misuse are in place

Workflow

Pre-computations

New possibility: exploit this feedback loop during single attack

User of the day

About SHA-1 Collision Search Graz

This is a research project that uses Internet-connected computers to do research in cryptanalysis. You can participate by downloading and running a free program on your computer.

This project is located at Graz University of Technology, Austria

Website of the department

Descriptio

Join SHA-1 Co

- · Read our
- This project Attach to P
- When pror
- http://boine
- If you're rui create an
- If you have

Returning par

Cyberacid (

Not much to say, just enjoy BOINC :-)

Cyberacid BS-rac: Credits: Rank: Rank%: 287 584 CPDN 108.073 7,494 94.588 SHA1 Coll 81,609 98.240

When will the first SHA-1

collision be found?

That depends on you :-)

- Your account view stats, modify preferences
- Teams create or join a team
- · Certificate
- Applications

3 526 TMRL DRTG 171 81.652 VTU 165 85.602 Leiden 759 Xtrem RALPH WEP-M+2 SZDG 1.028

Community

Application to (2nd) preimage attacks

Application to (2nd) preimage attacks

- One is well known [Yu, Wang 2005]:
 - Any collision differential with high enough probability 2^{-p} can be used for one out of 2^p messages to find a 2nd preimage
 - On average, the resulting speedup over brute force search is negligible
- Surprisingly, there is another link between collision attacks and preimage and 2nd preimage attacks
- no constraints on 1st preimage or target hash

Application to (2nd) preimage attacks: Idea

Start with candidate message, hash it In case message is not a preimage Use (collection of) fast near-collision attacks to

Toggle collection of bits at the output of the hash (→ advantage over brute force search)

Repeat

Explored for MD4, HAVAL, reduced SHA/SHA-1 Even on average, noticeable improvement over brute force search

Summary

SHA-1 collisions finally within reach

- New method
 - exploit more degrees of freedom
 - use them more efficiently
 - many different attacks are generated on demand
- Open Problem
 - Exploit interaction between client architecture and cryptanalytic method
- Link between near-collision attacks and preimage attacks

