
Key Recovery with Probabilistic
Neutral Bits

Simon Fischer1, Shahram Khazaei2 and
Willi Meier1

1FHNW, Windisch, Switzerland
2EPFL, Lausanne, Switzerland

ESC 7.1. – 11. 1. 2007

Outline

• Motivation

• Probabilistic Neutral Bits

• Description of Salsa

• Analysis of Salsa

• Attack based on polynomial description

• Application to Trivium

• Application to Grain-128

• Conclusions

Motivation

Given a Boolean function

F(K,V): {0 ,1}n x {0 ,1}m � {0 ,1}

where K is the secret key and V is the initial vector of a
stream cipher.

F: Key/IV mixing function, or function derived from it.

Oracle chooses random unknown key K = (k0,…,kn-1)
and returns (exact or biased) value

z= F(K,V)

for every query V = (v0,…,vm-1) of our choice.

Goal: Determine key K in chosen IV attack.

If F mixes its inputs properly, we need to try all 2n keys,
by sending O(n) queries to oracle.

Investigate methods which can lead to faster recovery of
key in case mixing of inputs is not complete.

Existence of faster methods highly depends on structure
of F.

1st direction: Analysis of reduced round variants of
Salsa20.

Based on truncated differentials and approximate
backwards computation.

2nd direction: Recent framework for chosen IV
statistical analysis of stream ciphers (Saarinen, O'Neil,
Englund-Johansson-Turan):

Based on polynomial description of F.

Open problem: Can distinguishers be exploited for key
recovery?

Of interest for stream ciphers with round based
initialization function F with sparse Boolean functions
as components.

Examples: eSTREAM candidates Grain, Trivium.

Probabilistic Neutral Bits

Neutral bits: Known from hash function cryptanalysis
(Biham-Chen, 2004).

Our goal:

Find functions approximating F(K,V) that depend on
less than all key bits.

Can sometimes be achieved, e.g., when V is restricted
to a suitable subset W.

Function approximation conceivable if some key bits
have no influence on value of z with high probability, i.e.,

if complementing these key bits is likely to leave value of
z unchanged:

Probabilistic neutral key bits

Reduced complexity key recovery?

Formally: approximate function F,

F(K,W): {0,1} n x W� {0,1}

by functions A(L,W) that depend only on subset L of key
bits, where W is a suitable subset of V.

Appropriate partitioning of key K as K = (L,M), with L of t
bits, and M of n-t bits.

Partitioning identified according to (probabilistic) neutral
bits.

Single key bit ki is called a neutral bit of function F if
complementation of ki does not change output of F, for all
inputs in K and W.

Define approximations A(L,W) to be F(K,W), either with a
fixed or randomly chosen value for non-significant key bits
in M.

Approximations A(L,W) of function F(K,W) expected to
hold with some probability.

If M consists of neutral key bits, get exact approximation
A(L,W) of function F(K,W) that depends only on the
(significant) key bits in L.

More generally, the neutrality measure of a key bit ki is
defined as

where is the probability that complementing ki does
not change the output of F.

Set threshold such that all key bits with are
included in the subkey L: significant bits.

Probabilistic neutral bits often inexistent in original key/IV
mixing procedure of a cipher, but:

Can occur in intermediate computation derived from mixing
process.

iγ

)1(2/1 iγ+

γ γγ <i

Description of Salsa

State: matrix of 16 words of 32 bits, 256-bit key

Update: Increment of a counter

Output function: compression function, achieved through
iteration of simple operation, called quarterround:

Input y = (y0, y1, y2, y3), Output z= (z0, z1, z2, z3)

)18)((

)13)((

)9)((

)7)((

2300

1233

0122

3011

<<<+⊕=
<<<+⊕=
<<<+⊕=
<<<+⊕=

zzyz

zzyz

yzyz

yyyz

State as a matrix:

Update below diagonal words first.

Repeat for all words in columns, then in rows.

10 rounds columns, 10 rounds rows.

Output the keystream X0 + X20.





















15141312

111098

7654

3210

xxxx

xxxx

xxxx

xxxx

Nonce, counter, of 64 bits

Initialization of Salsa:
Fill state with (key, counter, nonce), counter =0

Initial vector (known): IV = (counter, nonce)



















constkeykeykey

keyconstcountercounter

noncenonceconstkey

keykeykeyconst

Analysis of Salsa

Analysis of Salsa20 reduced to 8 rounds.

Steps:

Identify optimal choices for truncated differentials (over 1st

4 rounds)

Search for probabilistic neutral key bits to approximate
backwards computation from 8th round to 4th round, so that
bias in 4th round is still detectable.

For approximation to hold need to guess only significant
key bits. Enables reduced complexity search of these key
bits.

Choosing a differential:

Consider truncated differentials with 1-bit input difference
in the nonce and 1-bit difference in a specified word after
4 rounds.

Probabilistic backwards computation:

Assume differential with known bias is fixed.
Corresponding outputs Z and Z‘ are observed.

If full key is known, can invert operations in Z = X + XR and
Z‘ = X‘ + (X‘) R to observe r-round differential (R > r) with
its bias, by computing R - r rounds backwards.

If only subkey of m = 256 – nbits is known, could
approximate inversion by fixing remaining n key bits (e.g.,
by 0) and invert R - r rounds. However, observable bias
depends on n and positions of these n bits.

Probabilistic neutral key bits

Identify a large subset of key bits which can be replaced
by fixed bits so that detectable bias after approximate
backwards computation is still significant.

Precomputation

Find high probability differential with difference in nonce.

Identify subset of n key bits which are PNB‘s for this
differential.

Determine bias of differential with respect to subset of
PNB‘s, as observed after working R - r rounds backwards
from pairs of keystream blocks, a correct key portion,
and randomly chosen values for remaining key bits
(PNB‘).

Effective attack

Collect N pairs of keystream blocks generated with
selected input difference (N to be determined according to
optimal Neyman-Pearson distinguisher).

For each choice of the m = 256 – nremaining key bits, use
the N keystream blocks to filter candidate keys with
respect to optimal distinguisher.

For each filtered key, check correctness by performing
exhaustive search over n remaining bits.

Experimental results

Attack on Salsa20/7
Use 4-round differential optimal for 3-round backwards
computation. Find 125key bits with neutrality measure
greater than 0.6. Take these as PNB‘s.
Build attack in time 2153 and data 223 (best previous
attack: Tsunoo et. al., 2190 trials and 212 data).

Attack on Salsa20/8
Use 4-round differential optimal for 4-round backwards
computation. Identify 28 key bits with neutrality measure
greater than 0.2, which are taken as PNB‘s. Have to
guess m = 256 – 28 = 228bits.
Get attack in 2249 time and 221 data.

Attack based on polynomial description

Algebraic description of key/IV mixing function F too
complex.

Derive simpler Boolean functions C(K,W) with help of
oracle, where W is a subset of V.

If C(K,W) has imbalance in algebraic structure, e.g., for
high degree monomials, this can be exploited in
cryptanalysis.

Example Partition IV as V=(U,W) with U of l bits and W
of m-l bits.
C(K,W): Coefficient in ANF of a function deduced from F
by varying over bits in U only.

Scenarios:

1. If algebraic structure of C(K,W) is imbalanced for
chosen set W and many fixed values of unknown K:
Stream cipher can be distinguished from random
(Saarinen, O'Neil, EJT).

2. If C(K,W) is evaluated for some fixed W: C(K,W) is an
expression in key bits only. Sometimes does involve
not all key bits.

3. More generally, if for C(K,W) many key bits have only a
limited influence on values of C(K,W): Suitable
approximations may be identified that enable reduced
complexity key recovery.

Scenario 2:

Find relation C(K,W), evaluated for some W, that
depends on subset of t < n key bits only.

Determine functional form with 2t evaluations of C(K,W).

Can filter those keys which don‘t satisfy relation.

Example (Vielhaber)
C(K,W) sometimes depends on only few key bits and
can be a linear expression for well chosen IV part W:

Trivium initialization reduced to 576 iterations.

Allows reduced complexity key recovery in simplified
Trivium.

Scenario 3:

Idea is to find function A(L,W) that depends on sub
window L of t < n key bits only, and which is correlated to
C(W,K).

Ask oracle N queries to get information about t bits of key
in time N2t (N to be specified).

Problem: Find suitable function C and approximating
function A.

Derived Functions

Partition IV according to V = (U,W) with U of l bits and W of
m-l bits.

Write F as

∑∑ ==
α

α
α

κβα
κβα κβα UWKCKWUCVKF),(),(
,,),,(

where κβα ,, are multi-indices.

For every l}1,0{∈α the function),(WKCα can serve as

a function C = C(K,W)derived from F.

Adversary with help of oracle evaluates),(WKCα

for the unknown key K at chosen input W and for any
chosen by sending at most 2l queries.α
For l small enough, this is a feasible computation.

Attack: Description

Assume suitable function C and partitioning of K = (L,M)
for setting of approximation A.

Probabilistic guess and determine: Find small set of
candidate subkeys in L.

Filter set of all 2t subkeys in L into smaller set: Need to
distinguish correct guess L’ from incorrect ones.

Depends on correlation coefficient between A(L’,W) and
C(K,W) with K = (L,M) under hypotheses

Ho: guessed part L’ is incorrect
H1: guessed part L’ is correct

)1(
2

1
)},'(),(),'({Pr

)1(
2

1
)},(),()},'({Pr

1,'

0

ε

ε

+===

+===

MLKWKCWLA

MLKWKCWLA

WL

W

Both correlation coefficients and are random
variables depending on the key.

If distributions of and well separated, can achieve
small non detection probability pmis and false alarm
probability pfa at most 2-c.

If and assumed to be constants with , the
optimum distinguisher is Neyman-Pearson.

Determine required number N of values C(K,W) for
different W to achieve prescribed pfa and pmis.

0ε 1ε

10 εε <

0ε

0ε
1ε

1ε

Complexity of attack:

For each guess of L‘ of subkey, correlation ofε
),(),'(WKCWLA ⊕

is computed.
Requires computation of coefficients A(L‘,W) by adversary,
and computation of coefficient C(K,W) through oracle, for N
values of W. Has cost N2l.

Repeat for all 2t guesses for L‘.

Set of candidates for subkey L has size 2t pfa = 2t-c.

Entire key verified by exhaustive search over key part M
with cost 2t-c2n-t evaluations of function F.

Total complexity: N2l2t + 2t-c2n-t = N2l+t + 2n-c.

Application to Trivium

Trivium has 288 bit internal state consisting of three shift
registers of different lengths.

Initialization: n = 80 key bits and m = 80 IV bits are written
into two shift registers with remaining part being set to fixed
pattern.

Cipher state updated R = 18 x 64 = 1152times without
producing output.

Consider Boolean function F(K,V) which computes 1st key
stream bit after r rounds of initialization.

Derived functions C(K,W).

Previous results:

Distinguisher based on monomial tests (Englund-
Johansson-Turan), for r up to 11.5x 64 rounds, and l up
to 33 variable IV bits.

Key recovery (Vielhaber), similar to scenario 2, for
r = 9 x 64.

New results:

Provide examples with respect to scenario 3 for r = 10 x
64 as well as for r = 10.5 x 64.

Example 1
Number of rounds r = 10 x 64, variable IV part U with
l = 10 (non-consecutive) bit positions. Index of
coefficient is 1023. C (virtually) only depends
on t = 10 key bits L. Leads to exact approximating function
A(L,W).
65 equivalence classes for L with respect to A: one with
512members, and 64 classes with 8 members, i.e., get
½ x 1 + ½ x 7 = 4 bits of information about key.

Example 2
r = 672 rounds, l = 11 bit positions. Consider W‘s of weight
5 and compute neutrality measure of key bits: A set of
t = 29 key bits ruled out as significant.
Correct subkey of 29 bits can be detected using approxi-
mations with time complexity 255.

),(WKCC α=
α

Application to Grain-128

Grain-128 consists of a LFSR and a NFSR, and an
output function h. It has n = 128key bits, m = 96 IV bits
and full initialization takes R = 256rounds.

Example
r = 180, l = 7 suitable bit positions. Identify t = 110
significant key bits for L. Can detect these in estimated
time complexity 2124, i.e., improvement factor 24.

Conclusions

• Have introduced technique of probabilistic neutral bits.

• Useful in analysis of initialization of stream ciphers.

• Contributes to applicability of recent chosen IV
statistical distinguishers.

• Key recovery with complexity lower than exhaustive key
search for simplified versions of three phase 3 eStream
candidates.

