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PN (bent), APN and AB functions : definitions,
properties and equivalence notions

PN and APN functions :

For ' : g — [FL?, let
op(a,b) = {x € Fy : F(z+a)+F(x) =0b}|; a€F\{0}; belFI.

Let 6 = max dr(a,b). We have : § > 2"~
a€F5\{0},beFy

If 6 =277, then F is called Bent (B) or Perfect Nonlinear (PN) -
- All the derivatives D, F'(x) = F(x)+ F(x+a), a # 0 are balanced.
- Equivalently : all component functions v - F', v # 0 are bent.



Best resistance to differential attack.
K. Nyberg : Bent functions exist only when n is even and m < n/2.
If m = n, then 9 is lower bounded by 2.

If 6 = 2, then F is called almost perfect nonlinear (APN).

AB functions :

The nonlinearity of an S-box F' is the minimum Hamming distance
between :

- all component functions v - F(x), v € F* \ {0}

- and all affine functions v - x 4+ €, u € F5, € € Fs.



The nonlinearity is related to the spectrum of the Walsh transform

Weu,0) = 3 (-1)"F@He e B o € By

wEFg

The set Wp = {|Wg(u,v)| : v € F§,v € F5*\ {0}} is called the
extended Walsh spectrum of F'.

The nonlinearity equals :

1
2 uEF

NL(F)=2""1

max  |Wg(u,v)|.
5‘,1}615‘5”\0



If m = n and if we identify I} with Fsn then we can take :
x -y =tr(xy). We have then :

Wr(u,v) = Y (—1)rCF@Tu) -y € Fyn, v € Fan,

CCEFQ’FL

Bounds on the nonlinearity :

The covering radius bound states :

NL(F) <21 —2271  with equality iff F is bent.

(best resistance to linear attack).



The Sidelnikov-Chabaud-Vaudenay bound states that if m = n then :

n—1

NL(F) < 2n1 — 2"

In case of equality (n necessarily odd) F' is called almost bent (AB).
From now on, we assume that m = n.
Properties
For any AB function F’, the ext. Walsh spectrum W equals {0, ZnTH}.
Every AB function is APN (Chabaud-Vaudenay).

The converse is not true in general, even in the n odd case (counter-
examples : inverse function, Dobbertin function).



The converse is true for n odd if we assume some additionnal

condition on F (Canteaut, Charpin and Dobbertin) : the Walsh
n+1
spectrum is divisible by 2.

This implies that, if n is odd, then for every quadratic or more
generally plateaued function, APN = AB.

Plateaued :

Yu, Vv # 0, Wg(u,v) € {0,£A,}.



Different kinds of equivalence for APN and AB functions :

- Extended affine equivalence (EA-equivalence) :
F'=A0Fo0As+ A

for some affine permutations A;, A5 and an affine function A.

- CCZ equivalence : the graphs
iz, F(z)) | x € F3} and {(z,G(2)) | z € Fy}

are affine equivalent.



Any permutation is CCZ-equivalent to its inverse.

CCZ-equivalence between two functions F' and G is more general

than EA-equivalence between I and G or F and G=! or '~ and
Gt

CCZ-equivalence respects APNness and ABness.
It does not respect the algebraic degree, while EA equivalence does.



The first known APN and AB functions (power
functions in finite fields) and the related
CCZ-equivalent functions

Exponents d such that F(z) = 2% is APN on Fan up to EA-equivalence and inverse

e Gold functions :  d=2"+1, with ged(i,n) =1

e Kasami functions : d = 22" —2'+ 1, with ged(i,n) =1 (Janwa, Wilson, 1993)

e Welch function: d=2'+3, n=2t+1 (Dobbertin, 1999)

e Niho functions :  d=2t+22—1,if n=2t+ 1, t even; (Dobbertin, 1999)
d=204+2"7 —1,if n=2t+1, t odd

e Inverse function : d=2%"—1, withn=2t+1 (Beth, Ding, Nyberg, 1993)

e Dobbertin function : d = 24 23t 122t 4 2t 1 if n = 5t (Dobbertin, 2000)
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Conjecture (Dobbertin) :
This list of APN power functions is complete.

Proved (Dobbertin) :

APN power functions are permutations of 5, if n is odd, and are
three-to-one if n is even.

Exponents d that = is AB on Fan up to EA-equivalence and inverse

e Gold functions :  d=2"+1, with ged(i,n) =1 (Gold, 1968)

e Kasami functions : d = 2% — 2' + 1, with ged(i,n) =1 (Kasami, 1971)

e Welch function : d=2'+3,n=2t+1 (Canteaut, Charpin, Dobbertin, 2000)
e Niho function: n=2t+1:d=2+ 25 — 1 if t even (Hollman, Xiang, 2001)

3t+1

d=2t+272 —1if t odd
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Existence of APN non-power functions (up to equivalence) ?

- Functions Z?’:_Ol c;x2 1 ¢; € Fon, are not APN, except Gold
(Berger, Canteaut, Charpin, Laigle-Chapuy)

- Budaghyan, C.C. and Pott obtained “new” APN and AB func-
tions from Gold functions by using CCZ-equivalence :

I F(z) = 221 + (2 + 2) tr(22+! + 2),
where n > 3 is odd, gcd(n,i) =1, is AB.
It is EA-inequivalent to any power function and to any permutation.

2. F(x) = 22+ + (22 + 2+ 1) tr(a?+), where n > 4 is even, ged(n,i) = 1
is APN.
It is EA-inequivalent to any power function.
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3. For n even and divisible by 3, the function

T+ try (22D £ D) () by (0 4 22 F D)L
/ /

where gcd(n,i) = 1, tr,3(z) = Z?:/g’_lxﬂ is APN and is EA-inequivalent to

any known APN function.

4. For n odd and divisible by m, n # m and gcd(n,i) = 1, the function

51:2i+1 + trn/m(azQiH) + CIJQi?an/m(ZC) + x trn/m(az)zz +

)

[trn/m(x)2 1 -+ trn/m(x2 +1) - trn/m(x>]21+1 (xZ + trn/m(aj)Q - 1) +

9t

[trn/m(x)2i+1 + trn/m(x2i+1) + t'rn/m(a:)]ﬂﬂ (x + t’rn/m(az))

from Fon to Fon is an AB function of algebraic degree m + 2 which is

EA-inequivalent to any power function.
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Next step : existence of APN functions new (non-power) up to
CCZ-equivalence?
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Recently found APN and AB functions, new up to
CCZ-equivalence, and their properties

1. L. Budaghyan, C.C. and G. Leander have found two classes of
binomial APN quadratic functions generalizing a sporadic example
found by Edel, Kyureghyan and Pott.

Common framework (observed by Bierbrauer) for these two classes :

-n=tk;te{3,4},

— t, s, k pairwise coprime and t |k + s,

— « a primitive element of [Fon and w = a®, where e is a multiple

of 28 — 1, coprime with 2t — 1 :

F(z) = 22+ 4 g2 425D,
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For n > 12, these functions are EA-inequivalent to power functions
and CCZ-inequivalent to Gold and Kasami mappings.

In particular, for n = 12, 20, 24, 28 they are CCZ-inequivalent to all
power functions.

The class above with ¢ = 3 has been generalized by C. Bracken, E.
Byrne, N. Markin and G. McGuire :

k —k k-+s S —k k k-+s S
F(x) = w? x? TP gt T e T L Tt

is APN on Fy3:, when 3| k+s, (s,3k) = (3,k) = 1 and w is primitive
in ]F23k, v # w_l & sz.
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2. L. Budaghyan, C.C., G. Leander -
Let n be any positive integer. Then the function x> + tr(x”) is APN

on ]FQn :

This function is CCZ-inequivalent to any Gold function on Fon if
n > 7 and n > 2p where p is the smallest positive integer different

from 1 and 3 and coprime with n.

C. Bracken, E. Byrne, N. Markin, G. McGuire (Cirencester 2007) :
the extended Walsh spectrum of this function is the same as for Gold

function.
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3. An idea of J. Dillon : try functions of the form :
F(x) = ZC(AQ?z + Bx? + Cqu) + ;UQ(D,;UQ + ExQQ) + G,
where g = 2™/2, n even.

L. Budaghyan, C.C. (pushing further Dillon's idea) :

Let n be even and i be co-prime with n/2. Set q = 2n/2 and let
¢,b € Fon be such that ¢! = 1, ¢ ¢ (A1) X ¢ Fun},
cb? + b # 0. Then the function

F(Qj) _ x22i_|_2i _|_ be+1 _|_ C:Uq(22i+2i)
Is APN on Fon.,
18



Such vectors b, ¢ do exist if and only if ged(2* + 1,q+ 1) # 1. For
n/2 odd, this is equivalent to saying that i is odd.

4. L. Budaghyan, C.C. :

Let n be even and i be co-prime with n/2. Set q = 21/2 and let
c € Fon and s € Fon \ F,,. If the polynomial

X2+ peX? 49X 41
is irreducible over Fon, then the function
F(r) = x(xzi + a9 + chiq) + in(quq 4+ Sx2iq) n CC(zi+1)q

iIs APN on Fon.
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We checked with a computer for n = 6 that some of the functions
of cases 3 and 4 are CCZ-inequivalent to power functions on Fos.
It remains open to prove this for every even n > 6.

5. C. Bracken, E. Byrne, N. Markin, G. McGuire :

k—1
S k k-+s k k 1+k 7
F(x)=bx* Tt +b2 2% 72 4 ca® T+ g rip? T2

1=1

where k, s are odd and coprime, b,¢ € Fooi \ For, 7; € For is APN
on ]FQ%.

The extended Walsh spectrum of this function is the same as for
Gold function.
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Open problems and observations

1. Find a better bound than the covering radius bound for :
-nodd and m < n;
-n even and n/2 < m < n.

2. Find new PN functions F': F§ — ]Fgm.
Mainly, two primary constructions are known (K. Nyberg) :
- the Maiorana-McFarland construction (and a variant) :
(z,y) € Fonje — xzm(y) + G(y), 7 bijective;
- the Dillon construction :
(z,y) € Fonpe — G (%) (G balanced.
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Observation : two secondary constructions of PN S-boxes can be
derived from constructions of Boolean bent functions.
The simplest (and probably most effective) is :

Proposition 1 Let r and s have the same evenness; r < 3.

Let v : F§ — For be such that v~ '(a) is an (s — r)-dimensional
flat of 5, for every a € Far.

Let H : F§ — For be bent on v~ 1(a) for every a € For.

Then Fy g(x,y) =x¢v(y) + H(y), x € Faor,y € F3, is bent.

But it gives Iy g : Fy — For with r < 7.
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3. Find secondary constructions of APN functions.
Observation : the method above can give functions Iy, g : F§ — For
with extended Walsh spectrum {0, iQHTH} but with » < <.

4. Find constructions of APN/AB functions from PN, and vice
versa.

5. Find classes of APN functions by using CCZ-equivalence with
Kasami (resp. Welch, Niho, Dobbertin) functions.

6. Find classes of APN functions CCZ-inequivalent to power
functions and to quadratic functions.
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7. Find APN permutations with n even, or prove they cannot exist.

Observation : If APN permutations exist for n even, they are :

- neither power functions (Dobbertin),

- nor in Fy[x] (Hou),

- nor plateaued (Nyberg for partially-bent component functions) :

Proposition 2 Let n be even. Let F' be a plateaued APN function
from Fy to itself. Then the number of bent functions among the
functions v - F is at least £(2" — 1).
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8. Classify the extended Walsh spectra of APN functions.

Observations :

For n odd, the known APN functions have three possible spectra :

— the spectrum of the AB functions (eg the Gold functions)
which gives a nonlinearity of 27~1 — 272

— the spectrum of the inverse function, WhICh takes any value
divisible by 4 in the range [—27/2+1 4 1;27/2%1 4 1] and gives
a nonlinearity close to 271 — 27/2,

— the spectrum of the Dobbertin function which is more com-
plex (it is divisible by 27/5 and not divisible by 227/5+1): its
nonlinearity seems equal to 27~ — 237/5—1 _ 92n/5-1
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For n even, the spectra may be more diverse :
— the Gold functions,
— the Dobbertin function,
— As soon as n > 6, we find (quadratic) functions with different

spectra.

The nonlinearities seem also lower bounded by approximately gn—1 _
23n/5—1 _ 92n/5-1

Open question : is this situation general to all APN functions or
specific to the APN functions found so far?
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Proposition 3 Let F' be an APN function in n > 2 variables. Then
- the nonlinearity of F' cannot be null;

- for every real numbers a and b such that a < b, let Ngp be
the number of ordered pairs (u,v) € F3' x (F3' \ {0}) such that
W2 o(u) €)2" 4+ a;2™ + b[. Then the nonlinearity of F is lower
bounded by

1 1
Qn_l — 5\/271 -+ i(b + a + 4/ Aa,b)a

where Agp = (Noyp+1)(b—a)? +ab2"t%(2" — 1) 4 24n+2 _ 23n+2,
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Consequences :
- if W2 .(u) does not take values in the range ]0;2" 1], then F' is

AB (known).
- more generally, if W2 (u) does not take values in the range

2™ — 22771;2” + b| for some b (> 2"), the nonlinearity of F' is lower
bounded by 2"~ — /2" + 0.
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