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PN (bent), APN and AB functions : definitions,
properties and equivalence notions

PN and APN functions :

For F : Fn2 → Fm2 , let :

δF (a, b) = |{x ∈ Fn2 : F (x+a)+F (x) = b}|; a ∈ Fn2\{0}; b ∈ Fm2 .

Let δ = max
a∈Fn2\{0},b∈Fm2

δF (a, b). We have : δ ≥ 2n−m.

If δ = 2n−m, then F is called Bent (B) or Perfect Nonlinear (PN) :

- All the derivatives DaF (x) = F (x)+F (x+a), a 6= 0 are balanced.

- Equivalently : all component functions v · F , v 6= 0 are bent.
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Best resistance to differential attack.

K. Nyberg : Bent functions exist only when n is even and m ≤ n/2.

If m = n, then δ is lower bounded by 2.

If δ = 2, then F is called almost perfect nonlinear (APN).

AB functions :

The nonlinearity of an S-box F is the minimum Hamming distance

between :

- all component functions v · F (x), v ∈ Fm2 \ {0}
- and all affine functions u · x+ ε, u ∈ Fn2 , ε ∈ F2.
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The nonlinearity is related to the spectrum of the Walsh transform

WF (u, v) =
∑
x∈Fn2

(−1)v·F (x)+u·x, u ∈ Fn2 , v ∈ Fm2 .

The set WF = {|WF (u, v)| : u ∈ Fn2 , v ∈ Fm2 \ {0}} is called the

extended Walsh spectrum of F .

The nonlinearity equals :

NL(F ) = 2n−1 − 1
2

max
u∈Fn2 ,v∈Fm2 \0

|WF (u, v)|.
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If m = n and if we identify Fn2 with F2n then we can take :

x · y = tr(x y). We have then :

WF (u, v) =
∑
x∈F2n

(−1)tr(vF (x)+ux), u ∈ F2n, v ∈ F2n.

Bounds on the nonlinearity :

The covering radius bound states :

NL(F ) ≤ 2n−1 − 2
n
2−1 with equality iff F is bent.

(best resistance to linear attack).
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The Sidelnikov-Chabaud-Vaudenay bound states that if m = n then :

NL(F ) ≤ 2n−1 − 2
n−1

2 .

In case of equality (n necessarily odd) F is called almost bent (AB).

From now on, we assume that m = n.

Properties

For any AB function F , the ext. Walsh spectrumWF equals {0, 2n+1
2 }.

Every AB function is APN (Chabaud-Vaudenay).

The converse is not true in general, even in the n odd case (counter-

examples : inverse function, Dobbertin function).
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The converse is true for n odd if we assume some additionnal

condition on F (Canteaut, Charpin and Dobbertin) : the Walsh

spectrum is divisible by 2
n+1

2 .

This implies that, if n is odd, then for every quadratic or more

generally plateaued function, APN ⇒ AB.

Plateaued :

∀u, ∀v 6= 0, WF (u, v) ∈ {0,±λv}.
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Different kinds of equivalence for APN and AB functions :

- Extended affine equivalence (EA-equivalence) :

F ′ = A1 ◦ F ◦A2 +A

for some affine permutations A1, A2 and an affine function A.

- CCZ equivalence : the graphs

{(x, F (x)) | x ∈ Fn2} and {(x,G(x)) | x ∈ Fn2}

are affine equivalent.
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Any permutation is CCZ-equivalent to its inverse.

CCZ-equivalence between two functions F and G is more general

than EA-equivalence between F and G or F and G−1 or F−1 and

G−1.

CCZ-equivalence respects APNness and ABness.

It does not respect the algebraic degree, while EA equivalence does.
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The first known APN and AB functions (power
functions in finite fields) and the related

CCZ-equivalent functions

Exponents d such that F (x) = xd is APN on F2n up to EA-equivalence and inverse

• Gold functions : d = 2i + 1, with gcd(i, n) = 1

• Kasami functions : d = 22i− 2i+1, with gcd(i, n) = 1 (Janwa, Wilson, 1993)

• Welch function : d = 2t + 3, n = 2t+ 1 (Dobbertin, 1999)

• Niho functions : d = 2t + 2
t
2 − 1, if n = 2t+ 1, t even ; (Dobbertin, 1999)

d = 2t + 2
3t+1

2 − 1, if n = 2t+ 1, t odd

• Inverse function : d = 22t − 1, with n = 2t+ 1 (Beth, Ding, Nyberg, 1993)

• Dobbertin function : d = 24t + 23t + 22t + 2t− 1, if n = 5t (Dobbertin, 2000)
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Conjecture (Dobbertin) :

This list of APN power functions is complete.

Proved (Dobbertin) :

APN power functions are permutations of F∗
2n if n is odd, and are

three-to-one if n is even.

Exponents d that xd is AB on F2n up to EA-equivalence and inverse

• Gold functions : d = 2i + 1, with gcd(i, n) = 1 (Gold, 1968)

• Kasami functions : d = 22i − 2i + 1, with gcd(i, n) = 1 (Kasami, 1971)

• Welch function : d = 2t+3, n = 2t+1 (Canteaut, Charpin, Dobbertin, 2000)

• Niho function : n = 2t+ 1 ; d = 2t + 2
t
2 − 1 if t even (Hollman, Xiang, 2001)

d = 2t + 2
3t+1

2 − 1 if t odd
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Existence of APN non-power functions (up to equivalence) ?

- Functions
∑n−1
i=0 cix

2i+1; ci ∈ F2n, are not APN, except Gold

(Berger, Canteaut, Charpin, Laigle-Chapuy)

- Budaghyan, C.C. and Pott obtained “new” APN and AB func-

tions from Gold functions by using CCZ-equivalence :

1. F (x) = x2i+1 + (x2i + x) tr(x2i+1 + x),
where n > 3 is odd, gcd(n, i) = 1, is AB.
It is EA-inequivalent to any power function and to any permutation.

2. F (x) = x2i+1 + (x2i + x+ 1) tr(x2i+1), where n ≥ 4 is even, gcd(n, i) = 1
is APN.
It is EA-inequivalent to any power function.
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3. For n even and divisible by 3, the function

[x+ trn/3(x2(2i+1) + x4(2i+1)) + tr(x) trn/3(x2i+1 + x22i(2i+1))]2
i+1,

where gcd(n, i) = 1, trn/3(x) =
∑n/3−1
i=0 x23i

is APN and is EA-inequivalent to
any known APN function.

4. For n odd and divisible by m, n 6= m and gcd(n, i) = 1, the function

x2i+1 + trn/m(x2i+1) + x2itrn/m(x) + x trn/m(x)2
i
+

[trn/m(x)2
i+1 + trn/m(x2i+1) + trn/m(x)]

1
2i+1(x2i + trn/m(x)2

i
+ 1) +

[trn/m(x)2
i+1 + trn/m(x2i+1) + trn/m(x)]

2i

2i+1(x+ trn/m(x))

from F2n to F2n is an AB function of algebraic degree m + 2 which is

EA-inequivalent to any power function.
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Next step : existence of APN functions new (non-power) up to

CCZ-equivalence ?
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Recently found APN and AB functions, new up to
CCZ-equivalence, and their properties

1. L. Budaghyan, C.C. and G. Leander have found two classes of

binomial APN quadratic functions generalizing a sporadic example

found by Edel, Kyureghyan and Pott.

Common framework (observed by Bierbrauer) for these two classes :

– n = tk ; t ∈ {3, 4},
– t, s, k pairwise coprime and t | k + s,

– α a primitive element of F2n and w = αe, where e is a multiple

of 2k − 1, coprime with 2t − 1 :

F (x) = x2s+1 + wx2k+s+2k(t−1)
.
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For n ≥ 12, these functions are EA-inequivalent to power functions

and CCZ-inequivalent to Gold and Kasami mappings.

In particular, for n = 12, 20, 24, 28 they are CCZ-inequivalent to all

power functions.

The class above with t = 3 has been generalized by C. Bracken, E.

Byrne, N. Markin and G. McGuire :

F (x) = u2kx2−k+2k+s + ux2s+1 + vx2−k+1 + wu2k+1x2k+s+2s

is APN on F23k, when 3 | k+s, (s, 3k) = (3, k) = 1 and u is primitive

in F23k, v 6= w−1 ∈ F2k.
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2. L. Budaghyan, C.C., G. Leander :

Let n be any positive integer. Then the function x3 + tr(x9) is APN

on F2n.

This function is CCZ-inequivalent to any Gold function on F2n if

n ≥ 7 and n > 2p where p is the smallest positive integer different

from 1 and 3 and coprime with n.

C. Bracken, E. Byrne, N. Markin, G. McGuire (Cirencester 2007) :

the extended Walsh spectrum of this function is the same as for Gold

function.
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3. An idea of J. Dillon : try functions of the form :

F (x) = x(Ax2 +Bxq + Cx2q) + x2(Dxq + Ex2q) +Gx3q,

where q = 2n/2, n even.

L. Budaghyan, C.C. (pushing further Dillon’s idea) :

Let n be even and i be co-prime with n/2. Set q = 2n/2 and let

c, b ∈ F2n be such that cq+1 = 1, c 6∈ {λ(2i+1)(q−1), λ ∈ F2n},
cbq + b 6= 0. Then the function

F (x) = x22i+2i + bxq+1 + cxq(2
2i+2i)

is APN on F2n.
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Such vectors b, c do exist if and only if gcd(2i + 1, q + 1) 6= 1. For

n/2 odd, this is equivalent to saying that i is odd.

4. L. Budaghyan, C.C. :

Let n be even and i be co-prime with n/2. Set q = 2n/2 and let

c ∈ F2n and s ∈ F2n \Fq. If the polynomial

X2i+1 + cX2i + cqX + 1

is irreducible over F2n, then the function

F (x) = x(x2i + xq + cx2iq) + x2i(cqxq + sx2iq) + x(2i+1)q

is APN on F2n.
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We checked with a computer for n = 6 that some of the functions

of cases 3 and 4 are CCZ-inequivalent to power functions on F26.

It remains open to prove this for every even n ≥ 6.

5. C. Bracken, E. Byrne, N. Markin, G. McGuire :

F (x) = bx2s+1 + b2
k
x2k+s+2k + cx2k+1 +

k−1∑
i=1

rix
2i+k+2i

where k, s are odd and coprime, b, c ∈ F22k \F2k, ri ∈ F2k is APN

on F22k.

The extended Walsh spectrum of this function is the same as for

Gold function.
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Open problems and observations

1. Find a better bound than the covering radius bound for :

- n odd and m < n ;

- n even and n/2 < m < n.

2. Find new PN functions F : Fn2 → Fn/22 .

Mainly, two primary constructions are known (K. Nyberg) :

- the Maiorana-McFarland construction (and a variant) :

(x, y) ∈ F2n/2 → xπ(y) +G(y), π bijective ;

- the Dillon construction :

(x, y) ∈ F2n/2 → G
(
x
y

)
, G balanced.
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Observation : two secondary constructions of PN S-boxes can be

derived from constructions of Boolean bent functions.

The simplest (and probably most effective) is :

Proposition 1 Let r and s have the same evenness ; r ≤ s
3.

Let ψ : Fs2 → F2r be such that ψ−1(a) is an (s − r)-dimensional
flat of Fs2, for every a ∈ F2r.
Let H : Fs2 → F2r be bent on ψ−1(a) for every a ∈ F2r.
Then Fψ,H(x, y) = xψ(y) +H(y), x ∈ F2r, y ∈ F s2 , is bent.

But it gives Fψ,H : Fn2 → F2r with r ≤ n
4 .
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3. Find secondary constructions of APN functions.

Observation : the method above can give functions Fψ,H : Fn2 → F2r

with extended Walsh spectrum {0,±2
n+1

2 } but with r ≤ n
3 .

4. Find constructions of APN/AB functions from PN, and vice

versa.

5. Find classes of APN functions by using CCZ-equivalence with

Kasami (resp. Welch, Niho, Dobbertin) functions.

6. Find classes of APN functions CCZ-inequivalent to power

functions and to quadratic functions.
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7. Find APN permutations with n even, or prove they cannot exist.

Observation : If APN permutations exist for n even, they are :

- neither power functions (Dobbertin),

- nor in F2[x] (Hou),

- nor plateaued (Nyberg for partially-bent component functions) :

Proposition 2 Let n be even. Let F be a plateaued APN function
from Fn2 to itself. Then the number of bent functions among the
functions v · F is at least 2

3(2
n − 1).
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8. Classify the extended Walsh spectra of APN functions.

Observations :

For n odd, the known APN functions have three possible spectra :

– the spectrum of the AB functions (e.g. the Gold functions)

which gives a nonlinearity of 2n−1 − 2
n−1

2 ,

– the spectrum of the inverse function, which takes any value

divisible by 4 in the range [−2n/2+1 + 1; 2n/2+1 + 1] and gives

a nonlinearity close to 2n−1 − 2n/2,
– the spectrum of the Dobbertin function which is more com-

plex (it is divisible by 2n/5 and not divisible by 22n/5+1) ; its

nonlinearity seems equal to 2n−1 − 23n/5−1 − 22n/5−1.
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For n even, the spectra may be more diverse :

– the Gold functions,

– the Dobbertin function,

– As soon as n ≥ 6, we find (quadratic) functions with different

spectra.

The nonlinearities seem also lower bounded by approximately 2n−1−
23n/5−1 − 22n/5−1.

Open question : is this situation general to all APN functions or

specific to the APN functions found so far ?
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Proposition 3 Let F be an APN function in n > 2 variables. Then
- the nonlinearity of F cannot be null ;
- for every real numbers a and b such that a ≤ b, let Na,b be
the number of ordered pairs (u, v) ∈ Fn2 × (Fn2 \ {0}) such that
W 2
v·F (u) ∈]2n + a; 2n + b[. Then the nonlinearity of F is lower

bounded by

2n−1 − 1
2

√
2n +

1
2
(b+ a+

√
∆a,b),

where ∆a,b = (Na,b+1)(b−a)2 +a b 2n+2(2n− 1)+24n+2− 23n+2.
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Consequences :

- if W 2
v·F (u) does not take values in the range ]0; 2n+1[, then F is

AB (known).

- more generally, if W 2
v·F (u) does not take values in the range

]2n − 22n

b ; 2n + b[ for some b (≥ 2n), the nonlinearity of F is lower

bounded by 2n−1 − 1
2

√
2n + b.
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