Scalable Opportunistic VANET Content Routing With Encounter Information

Yu-Ting Yu, Yuanjie Li, Xingyu Ma, Wentao Shang, M. Y. Sanadidi, Mario Gerla

Problem Statement

- Named Data Networking (NDN) is beneficial for VANETs
 - In-network caching
 - Multi-source downloading
- In VANET, we categorize the contents as
 - Location-dependent: "traffic jam information on highway 110 North at exit 35B"
 - Location-independent: "gangnam_style.mp3" or "nearest ambulance"
- We explore how to retrieve location-independent content from other vehicles unambiguously and efficiently in the NDN architecture

Motivating Example

Solution: Last Encounter Content Routing

Solution: Last Encounter Routing

Retrieve Content using LER and NDN

Retrieve Content using LER and NDN

Retrieve Content using LER and NDN

Protocol Design

- Content providers periodically advertise contents to one-hop neighbors
 - Haggle Content Based Routing Philosophy(2003)
- Interest Routing
 - Interests are flooded at the beginning with expanding scope (1 hop, then 2 hops etc)
 - Switch from flooding to opportunistic GEO-ROUTING once the interest matches a forwarder that LAST ENCOUNTERED the provider
 - Forwarders with fresher provider (Last Encounter) information are given higher priority

Provider location changes from advertising to interest propagation => must repeat flood search

Opportunistic Geo-Routing is realized by staggered rebroadcast timers

Assuming file geo-location is known

Regular Geo Routing uses single path => not reliable Opportunistic Geo-Routing exploits multiple paths

Phase 1: flooding-based content search

- Initially, expand search range with minimized redundant transmissions
- The farthest nodes from the last hop are given highest priority

$$T_1 = T_{update} + (T_{dist} - T_{update}) \frac{D_{max} - min(D_{max}, D_{transmitter})}{D_{max}}$$

- T_{dist}: maximum waiting time
- D_{max} : estimated transmission range
- *D_{transmitter}*: distance from last hop
- T_{update} : time gap for nodes with updated provider location to rebroadcast

Phase 2: Opportunistic Geo-Routing

- A destination location is carried by the Interest
- Relays nearer the destination are given higher priority

$$T_2 = T_{update} + (T_{dist} - T_{update}) \frac{D_{ref}}{D_{max}}$$

Implementation: Overview

Simulation Settings

- Simulation urban environment in NS3
- Scenario
 - Physical layer: CORNER propagation model
 - 120 second mobility trace generated by SUMO using TIGER/Line files
- Application traffic
 - One provider
 - Interest is initiated randomly by a vehicle

Simulation Results: # hops in phase 1

Simulation Results: Retrieval Rate

Network Research Lab

Q & A

