
New Directions for
Dining Cryptographers
Computationally Secure Sender and Recipient Untraceability

Christian Franck

New Directions for Dining Cryptographers

by Christian Franck

Submitted in partial fulfillment of the requirements for the degree of

Master of Science in Information and Computer Sciences

at the University of Luxembourg

First Supervisor: Prof.Dr.Thomas Engel

Second Supervisor: Prof.Dr.Ulrich Sorger

Assistant: Dipl. Inform.Volker Fusenig

November 2008

Abstract

In the dining cryptographers protocol [7], a malicious participant can disrupt

communication by providing a wrong output. Existing techniques only allow

to limit the damage to some extent. This is a major obstacle to the practical

usage of the protocol. The objective of this thesis is to provide a better

response to this problem. Our starting point are the ideas presented by Golle

and Juels in [21], where outputs of algebraic structure are generated based

on the Diffie-Hellman key exchange [12], and where non-interactive zero-

knowledge proof techniques allow to prove the correctness of these outputs.

We present verifiable superposed sending, a computationally secure technique

which allows participants to generate verifiable outputs. We use a reservation

phase which provides participants with a digital pseudonym of the sender.

They use this digital pseudonym to generate an output of algebraic structure

by directly establishing a shared secret with the sender. A honest participant

can prove that his output is correct with respect to the reservation. The

dining cryptographers protocol becomes a practicable alternative to mixnets,

especailly when strong anonymity is required, and it has the advantage that

it can transfer messages with lower latency. We present possible applications

in the fields of electronic voting, low latency anonymous communication and

secure multiparty computation.

Acknowledgements

I would like to thank my first supervisor Prof. Dr. Thomas Engel, his assistant

Dipl. Inform.Volker Fusenig, and last but not least my tutor and my second

supervisor Prof.Dr.Ulrich Sorger, for allowing me to work on this interesting

topic, for the interesting discussions, and for all the kind support during the

realisation of this work!

1

Contents

1 Introduction 4

2 Anonymous Communication 7

2.1 Anonymity and Untraceable Communication 7

2.2 Concepts for Online Communication 10

2.3 Attacker Models, Trust and Strong Anonymity 10

2.4 Mixnets . 11

2.5 Summary . 12

3 The Dining Cryptographers 14

3.1 The Story . 14

3.2 Superposed Sending . 16

3.2.1 Key Establishment . 18

3.2.2 Reservation . 18

3.2.3 Detection of Disrupters 20

3.3 Reliable Broadcast . 23

3.4 Bandwidth Usage . 24

3.5 Summary . 25

4 A Verifiable Dining Cryptographers Protocol 26

4.1 Verifiable Superposed Sending 26

4.1.1 Purpose . 26

4.1.2 Preliminaries . 27

4.1.3 The Short DC-Net Protocol 27

4.1.4 Remaining Problems 29

4.1.5 Our Solution . 29

4.1.6 Long Messages . 31

4.1.7 Variations . 31

2

4.1.8 Discussion . 31

4.2 Reservation . 32

4.2.1 What We Need . 32

4.2.2 A Mixnet based Reservation 33

4.3 Effects on the Broadcast . 34

4.4 Applications . 34

4.4.1 Electronic Voting . 35

4.4.2 Low Latency Anonymous Communication 35

4.4.3 Secure Multi-Party Computation 40

4.5 Summary . 40

5 Conclusions 42

A Cryptographic Primitives 46

A.1 Computationally Hard Problems 46

A.2 Diffie-Hellman Key Exchange 47

A.3 Public Key Encryption Schemes 47

A.3.1 El Gamal Encryption 47

A.3.2 Homomorphic Encryption 48

A.3.3 Public Key Signature Schemes 48

A.3.4 El Gamal Signature Scheme 48

A.3.5 Aggregate Signatures 49

B Proofs of Knowledge 50

B.1 Zero-Knowledge Proofs of Knowledge 50

B.2 Sigma Protocols . 50

B.3 Proving Statements about Discrete Logarithms 51

3

Chapter 1

Introduction

In this chapter, we discuss the aims and goals of this thesis and briefly discuss

what is coming in the following chapters.

What is this Thesis About?

Anonymous communication is important to protect privacy and freedom of

speech. Several concepts have been invented to allow anonymous commu-

nication over a public network. The strongest known concept is the dining

cryptographers protocol, presented by Chaum in [7]. It guarantees uncondi-

tional (information theoretical) sender and recipient untraceability, but it is

very inefficient and therefore considered to be unpractical.

As illustrated in Figure 1.1, the participants P1, P2, ..., Pn respectively

announce the outputs O1, O2, ..., On. These outputs are indistinguishable

from random outputs, but they allow to compute an anonymous message M ,

typically according to the formula: M = O1⊕O2⊕ ...⊕On. The anonymous

message appears but the sender and the recipient remain unknown.

A major obstacle to the practical application is that malicious partic-

ipants may disrupt communication by providing wrong outputs. Current

...O1 O2 OnP1 P2 Pn

︸ ︷︷ ︸

M = O1 ⊕O2 ⊕ ...⊕On

Figure 1.1: The dining cryptographers

4

.
.
.

.
.
.

Mix

Figure 1.2: Chaum’s mix

techniques for the detection of these disrupters are complicated and only

limit the disruptions to a certain extent.

The goal of this thesis was use cryptographic techniques to realize a

computationally secure dining cryptographers protocol, in which malicious

participants who disrupt the communication are easy to detect.

Why is this Interesting?

Currently, most anonymisation systems that are used in practice are based

on mixes. This concept was proposed by Chaum in [9]. As illustrated in

1.2, many senders send their messages to a common mix which shuffles the

messages and forwards them to the receivers. This way it is difficult to link

a message to a sender. Mixes are used because they are efficient, and they

scale to a large number of participants.

However, the problem is that this mix concept is weak. First, participants

must trust the mix owner, who knows which participant is the sender of a

message. Furthermore, the messages of all participants must be equal in size.

Otherwise a global observer may deduce who is the sender of a message, by

comparing the size of the messages entering and leaving the mix.

Over the last years, many efforts have been made to create strong anonymi-

sation systems based on this weak concept. Typically, efficiency is sacrificed

to obtain more security. Multiple mixes are combined to a mixnet, in which

messages are arranged into packets of equal size, and then mixed multiple

times before reaching a receiver. However, these new constructions have

again new weaknesses and there is like a competition between new attacks

5

and new designs.

I believe that in order to realize a strong anonymisation system, it is not

a good approach to start from a weak and efficient concept and then to try

to make it stronger (at the cost of efficiency). I think it is better to start

from a very strong and inefficient concept, and then to try to make it more

efficient (and a bit weaker).

Therefore this thesis starts from the dining cryptographers protocol, which

is very strong and very inefficient, and then tries to make it more efficient.

Unlike existing approaches, wherein a message is routed through several

small dining cryptographer networks [28][15][31][18], this thesis is about im-

proving the dining cryptographers protocol itself.

What is the Proposed Solution?

The key contribution of this work is the presentation of verifiable superposed

sending, a new technique which allows participants of the dining cryptogra-

phers protocol to generate verifiable outputs. We use a new kind of reser-

vation phase which provides all participants with a digital pseudonym1 of

the sender. Based on the ideas presented by Golle and Juels in [21], zero-

knowledge proof techniques allow honest sender to prove that their outputs

are correct, without who is the sender.

Organisation

This document is organised as follows:

The first chapter introduces the subject of the thesis, the motivation, and

provides an brief outlook to what can be found in the rest of this document.

The second chapter provides the reader with some background on anonymity,

untraceable communication and mixnets.

The third chapter presents the dining cryptographers protocol, explains

the underlying techniques and the related problems.

The fourth chapter presents our new technique "verifiable superposed

sending", and possible applications.

The fifth and last chapter contains a conclusion and indicates possible

future work that can be done in this area.

1A digital pseudonym is a public key, and the holder of the corresponding private key
is anonymous. The term was introduced by Chaum in [9].

6

Chapter 2

Anonymous Communication

This chapter is an introduction to anonymity and untraceable communi-

cation. We present existing concepts for untraceable communication, and

explain what we expect from a protocol to obtain strong anonymity. We

conclude with an introduction to mixnets.

2.1 Anonymity and Untraceable Communication

We want anonymity to protect our privacy against people who could use

personal information about us to harm us. This is particularly important

in many critical areas like voting, freedom of speech, treatment of medical

data, financial data and similar.

One possibility to achieve anonymity is to physically access the network

in a way that nobody can associate the usage of the access point to your

person. Internet cafés and public hotspots offer opportunities to access the

web in an anonymous way. Prepaid SIM cards allow to log into the GSM

network and into the internet anonymously. Unprotected LAN or WLAN

access points can serve as anonymous entry points to the internet. However,

most of these methods are expensive to realise and some are not legal. We

would prefer to have anonymity while using our own internet connection.

This is why we need protocols for untraceable communication.

When talking about untraceable communication, we assume that the

different participants have names and IP addresses. So there will not be

anonymity in a literal sense. Untraceability means that people within the

group will be able to communicate in a way that nobody can tell who is

7

x

x

sender recipient

recipient anonymity set

recipient anonymity set

sender anonymity set

sender anonymity set

sender and recipient anonymity set

Figure 2.1: Different anonymity sets

1 N

Maximal Anonymity

Figure 2.2: Maximal degree of anonymity

communication with whom. It should not be possible to follow the path of

a message from one participant to another. This is the role of protocols for

untraceable communication.

Anonymity Sets

In [29], we find the definition: "Anonymity is the state of being not iden-

tifiable within a set of subjects, the anonymity set". The requirement to

have an anonymity set is something special that makes anonymity differ

from other security properties like secrecy or authenticity. As illustrated in

Figure 2.1, we can distinguish between sender and receiver anonymity sets.

Often all participants are into both sets, to allow bidirectional anonymous

communication. Anonymity is not an absolute value, and one can have more

or less anonymity. The maximal amount of anonymity that can be reached

is dependent on the size of the anonymity set, as illustrated in Figure 2.2.

The more people there are, the more anonymity one can achieve.

8

Related Concepts

Pseudonymity Pseudonymity is the usage of a false name within a spe-

cific context. For example in internet chat rooms users will typically use a

pseudonym. Using a false name is a form of anonymity in the sense that

nobody will know your real name. But it will be known that everything that

is done with the same pseudonym is normally done by the same person. This

already gives a lot of information and can possibly be use by an attacker .

Plausible deniability Plausible deniability means that an action could

also have been made by someone else or could not have happened at all.

This concept is often used in the context of politics and military. In case of

problems with the public opinion, it can be a good strategy for politicians to

claim that they were not involved and to come up with a plausible scenario

in which someone else was the author.

Fundamental Limitations and Other Problems

Size of the anonymity set If some action X was done anonymously,

this means that nobody knows who has done X. However the group of all

possible persons who could have done X is a finite number, and the degree of

anonymity is related to the size of the group. This implies that there must

be at least two entities in a group to achieve anonymity.

Collusion of malicious participants A problem is that if all the other

members of the set work together, they can determine what a user is do-

ing by exclusion. If several members of the set cooperate ands share their

information, this is called collusion.

Detection of misbehaving participants One fundamental problem of

anonymous communication systems is the detection of misbehaving partici-

pants. These could try to disrupt the system by dropping packets, modifying

packets or by generating nonsense traffic. Detection of the disrupters is dif-

ficult since everything is done anonymously.

9

2.2 Concepts for Online Communication

Mixes The mix concept was proposed by David Chaum in [9]. Multiple

senders send their encrypted messages to a common mix, which decrypts

and shuffles the messages, and forwards them to the receivers. This way it

is difficult to link one message to one sender. This is illustrated in Figure

1.2. There is the possibility to add encrypted information to the message

that will allow the receiver of the message to respond via a special return

mix. This will not compromise the anonymity of the initial sender.

Crowds Crowds were presented by Reiter and Rubin in [30]. To become a

member of a crowd, the user must register at a central server. The members

of a crowd are called Jondos. A Sender creates a packet containing a message

and the address of the intended recipient. This packet is then randomly

forwarded from one Jondo to another, and finally sent to the recipient. Each

intermediary Jondo throws a coin to decide if he should forward the message

to another Jondo or to the recipient.

Onion routing Onion routing was presented by Goldschlag et al. in [19].

A sender sends his message through several onion routers. He selects a path

and encrypts the message several times. Each onion router decrypts one

layer, and forwards the packet to the next router. The messages is routed

through all the onion routers and finally sent to the destination.

The dining cryptographers The strongest known concept is the dining

cryptographers protocol, presented by Chaum in [7]. It was introduced in

the introduction, and will be presented in detail in the next chapter. It guar-

antees unconditional (information theoretical) sender and recipient untrace-

ability, but it is very inefficient and therefore considered to be unpractical.

2.3 Attacker Models, Trust and Strong Anonymity

Dolev-Yao Concepts like crowds and onion routing consider attackers to

have only a restricted view of the network. For example, the attacker will be

the destination node and can only see who is directly communicating with

him. They do not resist a strong attacker, like in the Dolev-Yao model. In

the Dolev-Yao attacker model [14], the attacker is the network. It is assumed

10

that every message that is send over the network is forwarded by the attacker.

He can observe, create, drop or modify all the packages he wants. This model

is often used to formally verify security protocols.

Trust Chaum’s mix concept only works, if the mix owner is assumed to

be honest. Senders must trust the mix owner. If the mix is operated by an

attacker, he knows everything. A possibility to approach (and eliminate) the

problem of trust is to send message through a sequence of mixes. This is

then called a mixnet, and we will see this in the next section.

Strong Anonymity Ideally we would like to have a system, which can

guarantee anonymity against a Dolev-Yao attacker, without requiring trust

in any third party. This is what we will call strong anonymity. The only

concept that offers this level of security out of the box, is the dining cryptog-

raphers protocol. Unfortunately it is not practical as such, because it is too

inefficient. Especially the problems related to malicious participants disrupt-

ing the communication are not solved in a satisfactory manner. Therefore

systems used in practice are based on mixnets, that we will see next.

2.4 Mixnets

To avoid that senders must trust one single mix owner, often in practice a

mixnet is used, wherein a set of messages is decrypted and shuffled consec-

utively by a set of mixes Mix1,Mix2, ...,Mixk . If there is one honest mix

in the mixnet, messages will be shuffled and be untraceable. Trust can be

completely eliminated, if each sender owns one mix. This gives each sender

the opportunity to shuffle the whole set of messages, ensuring that the mes-

sages are honesty shuffled at least once. However, this is expensive in terms

of bandwidth usage, and in terms of latency.

Evolution of Mixnets

The evolution of cryptography has lead to new types of mixnets. This has

been a very active area of research in the last 20 years.

Early Mixnets In a mixnet based on Chaum’s initial approach, senders

encrypt their messages using a public key cryptosystem. As a message must

11

.
.
.

...

.
.
.

Mix1 Mix2 Mix3 Mixk

Figure 2.3: Mixnet

be encrypted once for each mix, messages are intially very large. On their

way through the mixnet, one layer of encryption is removed at every mix,

which makes the packages shrink at every mix. This is not very efficient,

because the packages are initially be very large.

Reencryption Mixnets Reencryption mixnets use homomorphic encryp-

tion schemes, as described in appendix A.3.2, which allows to encrypt a

message multiple times, without increasing the packet size. This principle

was first presented by Park et al. in [25]. This requires less bandwidth, since

the initial packets are kept small.

Verifiable Mixnets Verifiable Mixnets prevent a malicious mix server

from manipulating the packets. Cryptographic proof techniques are used

to construct a proof that the set of packets leaving a mix is a permutation

and reencryption of the packets entering the mix. Zero knowledge proofs

allow the verify that the packets were correctly mixed, without revealing the

permutation. These types of mixnets are expensive in terms of computation.

2.5 Summary

We want anonymity to protect our privacy. Anonymity is the property of an

element to be indistinguishable within a set, the anonymity set. Untraceable

communication is communicating while making it impossible to follow the

path of the message. Different concepts exist to realize untraceable commu-

nication. Some do not resist a strong attacker, others require trust in a third

12

party. The dining cryptographers protocol is the strongest known concept,

but it is not used in practice. In a mixnet, a list of messages is sent through

a sequence of mixes. At each mix, the messages are shuffled. Mixnets are

currently the most widely used anonymisation systems.

13

Chapter 3

The Dining Cryptographers

The dining cryptographers protocol was described by Chaum in [7], and

allows to achieve unconditional sender and recipient untraceability. This

chapter presents the dining cryptographers protocol, and explains the under-

lying techniques. The different phases of a protocol are analysed, and the

existing problems are explained.

3.1 The Story

Chaum presents his protocol with the following story (Illustrated in Figure

3.1). Three cryptographers are dining in a restaurant, and the bill was paid

anonymously. They want to find out if one of them paid, or if it was their

employer, the National Security Agency. If it was one of them, they want this

person to remain anonymous, and therefore they decide to run the following

protocol. Each cryptographer flips a coin and shows it to his right neighbour.

Then everybody compares the coin on his right and the coin on his left and

announces "same" or "different". Normally, there should be an even number

of people which announce "different". Now, if one of them is paying, he will

lie and announce the opposite of what he normally would. This will result

in having an odd number of participants announcing "different". If this is

the case, everybody knows that one of them lied, but nobody can tell who is

the liar. So this allows to determine if one of them paid, while keeping this

person anonymous.

This story was used by Chaum to illustrate more general principles, which

we will introduce next. The Dining Cryptographers protocol is based on

14

Different!

Same!Same!

tails

heads

heads

(paying)

Odd number of ”Different” → One of them is paying!

Figure 3.1: The Dining Cryptographers

Superposed Sending (sender untraceability) Reliable Broadcast (receiver untraceability)

Dining Cryptographers (sender and receiver untraceability)

Figure 3.2: Sender and receiver untraceability

15

K
2,3

K1,3

K3,
5

K
3
,4

K1,
2

K
2
,5

K
2
,4

K
1
,5

K
1,4

K4,5

P1

P2

P3

P4P5

Figure 3.3: Complete key graph for 5 participants

two techniques: Superposed Sending for sender untraceability, and Reliable

Broadcast for recipient untraceability. This is illustrated in figure 3.2.

3.2 Superposed Sending

The technique used to achieve sender untraceability is called superposed

sending. It is described by Chaum in [7], by Pfitzmann in [28] and by Waidner

in [34]. The participants P1, P2, ..., Pn respectively announce their outputs

O1, O2, ..., On. Each value is indistinguishable from a random value, but the

combination of all these values allows to obtain the anonymous message. The

message M is obtained by a computation of the form: M = O1"O2"..."On.

Which participant is the sender remains unknown.

Key graph For each round of superposed sending, pairs of participants

must first establish secret keys. A key graph K represents which participants

share a secret key. The vertices of the graph are the participants, and the

edges indicate which participants share a secret key.

K = {V,E}, with







V = {P1, P2, ..., Pn}

E = {{Pi, Pj} : Pi and Pj share secret key Ki,j}

Figure 3.3 shows an example of a key graph with 5 participants. Any

biconnected graph will work, but a complete graph offers the best protection

against a collusion of malicious participants. A secret key Ki,j is a random

16

O1 = K1,2 #K1,3 #K1,4 #K1,5

O2 = K−1
1,2 #K2,3 #K2,4 #K2,5 #M(sender)

O3 = K−1
1,3 #K−1

2,3 #K3,4 #K3,5

O4 = K−1
1,4 #K−1

2,4 #K−1
3,4 #K4,5

O5 = K−1
1,5 #K−1

2,5 #K−1
3,5 #K−1

4,5

P1

P2

P3

P4

P5

Figure 3.4: Output computation

element of a group (G,"), and we define that Kj,i = Ki,j. We also define

Si = {k : {Pi, Pk} ∈ E}, which means Si is the set containing the indexes of

the participants which share a secret key with participant Pi.

Computation of Outputs The participants compute their outputs based

on the secret keys. The function sign(x) is 1 for x > 0, and −1 otherwise.

Each participant Pi, except the sender, computes his output Oi with:

Oi =
⊙

j∈Si

Ksign(j−i)
i,j

The sender Pi sends the message M . He computes his value Oi, using the

secret keys he knows, according to:

Oi =





⊙

j∈Si

Ksign(j−i)
i,j



"M

An example is given in figure 3.4. One can see that every key is used

twice. One participant uses the key itself (Ki,j), while another participant

uses the inverse of the key (K−1
i,j). The combination of all the outputs Oi

combines of all the Ki,j and K−1
i,j elements. Therefore the message M is

obtained by computing M = O1 " O2 " ... " On. As Ki,j " K−1
i,j = id, all

the secret keys cancel and only the message M remains.

17

3.2.1 Key Establishment

In order to obtain different outputs for each round, the pairs of participants

must agree on new secret keys for each round. From a conceptual point

of view, participants secretly toss coins over a secure channel. Different

techniques have been suggested to realize practical protocols. As suggested

in [7], participants may exchange harddiscs with random data, or they may

agree to use synchronised pseudo random generators. Golle and Juels present

a technique in[21], which is based on Diffie-Hellman key exchange, and which

allows to generate keys which have an algebraic structure. (We will see this

in section 4.1.3.)

3.2.2 Reservation

In one round of superposed sending, only one participant may send a mes-

sage, otherwise messages collide. Therefore, rounds should be reserved prior

to transmission. Several techniques have been suggested for the anonymous

reservation of rounds. After the reservation, each participant knows which

rounds he can use, but does not know who is using the other rounds. Nor-

mally several rounds are reserved at a time. Such a set of rounds is called

a transmission slot. We present now a brief overvier of various reservation

techniques that have been suggested.

Chaum’s Reservation Vector The reservation technique suggested by

Chaum in [7] is to use a vector full of 0 bits, where each participants would

randomly set one bit to 1. Participants use superposed sending with addition

in GF (2). The resulting vector appears after adding all the outputs. By

looking at the resulting vector, every participant can tell how many 1’s there

are on the left of his 1 and thereby determine the transmission slot that

he will use. If two or more participants happen to chose the same position,

there is a collision and the whole reservation has to be repeated. The more

participants there are, the larger he vector must be. Because of the birthday

paradox, the required size of the vector grows rapidly with an increasing

number of participants.

Reservation based on the Factorisation of a Polynomial The fol-

lowing technique is proposed by Bos and de Boers in [4]. Each participant

18

(5,200)
︸ ︷︷ ︸

=(1+1+1+1+1,M1+M2+M3+M4+M5)

(3,66)
︸ ︷︷ ︸

=(1+1+1,M2+M3+M4)

(2,31)
︸ ︷︷ ︸

=(1+1,M2+M3)

(1,11)
︸ ︷︷ ︸

=(1,M3)

(1,20)
︸ ︷︷ ︸

=(1,M2)

(1,35)
︸ ︷︷ ︸

=(1,M4)

(2,134)
︸ ︷︷ ︸

=(1+1,M1+M5)

(1,64)
︸ ︷︷ ︸

=(1,M5)

(1,70)
︸ ︷︷ ︸

=(1,M1)

Mi <
200
5

Mi <
66
3

Mi <
31
2

Mi <
134
2

M1 = 70
M2 = 20
M3 = 11
M4 = 35
M5 = 64

sent

computed

Figure 3.5: Superposed Receiving

Pi sends a vector (R,Ai, A2
i , ..., A

n
i). The packets collide and one obtains

the vector (
∑

iR,
∑

i Ai,
∑

i A
2
i , ...,

∑

iA
n
i). From this, a system of linear

equations is build to find the coefficients of a polynomial P. This polynomial

is then again decomposed into factors which are ordered. The transmission

slot that a participant receives, depends on the position of the factor related

to his value Ai. R is random value which will be used to shuffle the results

to prevent participants from influencing their position.

Reservation Map Technique The reservation map technique was de-

scribed by Pfitzmann in [27] and by Waidner in [34]. It is based on super-

posed sending, where G is an additive group modulo m. Each participant

chooses one position in a vector of k elements, and sends a 1 in that position.

In all other positions he sends 0. The resulting vector will indicate how many

participants chose a particular position. For example if 3 participants send

a 1 in a position, the result will contain a 3. The positions which contain a

1 indicate a successful reservation, all others are skipped. Participants then

use the transmission slots accordingly.

Reservation based on Superposed Receiving Superposed receiving is

a transmission technique described by Pfitzmann in [28], and by Waidner in

[34], which takes advantage of the algebraic properties of superposed sending.

19

Superposed sending is used with an additive group, such that a collision is

the sum of all values. The transmission of n messages takes n rounds. It

is illustrated in Figure 3.5. In the first round, all participants send their

messages and create a big collision. This gives the total sum of all values. In

the next round, only the participants who had a value below the average send

their messages, which divides the total sum into two sub sums. This process

is repeated until all the messages have appeared. To compute the average,

it must be known how many messages are colliding. Therefore participants

send a vector (1,Mi) instead of just Mi. Reservation based on superposed

receiving is done by having each participant chose a random number as his

message. Then, similarly to the order of the bit in Chaum’s vector, the

relative position of his number will tell a participant which transmission slot

he can use.

Reservation using a Mix Network In [33], Studholme and Blake sug-

gest to make reservations for the Dining Cryptographers using a mixnet to

create a secret permutation. Each participant secretly creates a ciphertext.

All these ciphertexts are sent through a mixnet, and a vector is obtained,

which contains a permutation and a reencryption of these ciphertexts. Each

participant can then recognise his ciphertext in the list, and use the corre-

sponding transmission slot.

3.2.3 Detection of Disrupters

Malicious participants may disrupt communication by providing the wrong

values. Such participants are called disrupters. The detection of these is

difficult, because of the anonymity of the protocol.

Trap based detection A first technique was presented by Chaum in [7]

and refined by Waidner in [34]. The principle is that in case of disruption,

an investigation phase is started, in which each participant reveals his secret

keys and explains how he computed his output. This does however also

reveal the sender and his message, and can therefore only be used for rounds

which contain no message. Therefore, participants use some of the rounds

they reserve as trap rounds, in which they will not send any message. If

a participant detects that one of his trap rounds was disrupted, he reveals

that it was trap and an investigation phase is started. A problem is that

20

Key Establishment

Commitment

ReservationReservation

AnnouncementAnnouncement

Palaver

Ok?
Investigation of Reserva-

tions and Announcements

Commitment

SendingSending

Palaver

Ok? Investigation of Traps

= with Superposed Sending

no

yes

noyes

Figure 3.6: Phases of Chaum’s protocol with Waidner’s improvements

21

if a round containing a message is disrupted, then the disrupter can not be

detected.

The different phases of Chaum’s protocol improved by Waidner are illus-

trated in detail in Figure 3.6. First, participants establish the secret keys

that they need for the superposed sending. Then follows a reservation phase

which is preceded by a commitment phase. A commitment phase ensures

that an attacker cannot change his output after seeing the output of another

participant. After the reservation phase, participants commit to encrypted

trap announcements, which contain the information they want to use a round

as a trap or not. After this comes a palaver phase, in which participants ver-

ify if the reservation and the announcements are accepted by everybody (If

nobody noticed a disruption). If there are complaints, an investigation phase

is started where all the keys used in the first phases are revealed. If there

are no complaints in the palaver phase, participants commit to their outputs

for the sending phase. In the sending phase, the messages are sent, trap

rounds are left empty. After the sending phase, there is another palaver

phase, where participants may ask for investigation if one of their traps was

disrupted. Participants who asked for an investigation then open their trap

announcements, to prove that the disrupted rounds are their traps, and ev-

erybody has to reveal the keys he used for those rounds, and to explain how

he computed his output.

Zero-knowledge proof techniques In [21], Golle and Juels present two

protocols which are based on zero knowledge proofs. The first protocol is

called the Short DC-net protocol, because it is designed to send single ele-

ments. Participants generate secret keys that have an algebraic structure.

Each participants sends a vector containing n outputs, and can prove that

n−1 of these outputs are correct and do not contain a message. This restricts

a disrupter to disrupt 1 out of n rounds. The second protocol is called the

Long DC-net protocol, and it can be used for longer messages. It is based on

technique which is comparable to randomised partial checking [22]. Again,

each participant sends a vector containing n outputs, and a participant can

generate a proof that a high number of his outputs are correct.

22

3.3 Reliable Broadcast

Receiver untraceability is based on reliable broadcast [34], which is defined

by the following two properties [26]:

• Every honest participant receives the same data.

• If the sender is honest, every honest participant receives the (unfalsi-

fied) data sent by the sender.

The sender broadcasts his message to all potential recipients, so every re-

cipient is equally likely to be the real receiver. If confidentiality is required,

the sender can encrypt the message, so that only the unknown recipient can

decrypt it. Reliable broadcast is important to be sure that every receiver

receives the same unfalsified message. Otherwise an attacker (which could

be the sender) can send different messages to different receivers, in order to

identify the real receiver by his response.

Physical Reliable Broadcast In the original story [7], the three cryptog-

raphers are sitting in a star restaurant and the reliable broadcast is physically

guaranteed.

The Byzantine Generals Problem In case the broadcast is not physi-

cally guaranteed, like in the story of the three cryptographers in the restau-

rant, we have the Byzantine Generals problem, which is introduced by Lam-

port et al. in [24].

Several generals hold Constantinople under siege. To conquer the city

they must attack all the same time, otherwise they will lose the battle. So

they must agree on what time to attack. Their problem is that they can

only send messages to each other, and there can be traitors who intercept or

modify the messages, so they are not sure if each general will really be there

at the desired time.

Byzantine Agreement Byzantine Agreement protocols are solutions to

the Byzantine Generals problem. They are used to realize a reliable broad-

cast on networks which do not physically guarantee reliable broadcast. De-

pending on the initial assumptions, different solutions exist. Several possi-

bilities are presented in [35] and [34].

23

One example is a computationally secure protocol suggested by Dolev

and Strong in [13]. The sender signs his message and sends it to all other

particpants. Recipients create signatures of the messages they received and

send them to other participants.

Fail-Stop Broadcast The idea of fail-stop broadcast is that the commu-

nication is interrupted as soon as two honest participants receive different

messages. Waidner shows in [34], how this can be done in the Dining Cryptog-

raphers protocol. The keys for a round of superposed sending are computed

such that they depend completely, but not exclusively, on the values that a

participant received in the previous round. If two participants receive differ-

ent values, their keys will become unsynchronised, and it will not be possible

to transfer a message anymore. The computation of the message will then

just return a random value.

3.4 Bandwidth Usage

The dining cryptographers protocol combines superposed sending and reli-

able broadcast. Superposed Sending requires each participant to generate

one output per message, and Reliable Broadcast requires each participant

to send his output to all other participants. For n participants, this means

n(n − 1) bits are sent for one message bit. This is expensive for a high

number of participants.

It is more efficient if participants locally combine their outputs and then

forward the results only. In [7], Chaum gives the example of a ring network,

in which each particpant combines his output with the value received from

his predecessor, and then forwards the result to the next particpant. After

one round, the message is computed, and it takes a second round to forward

the message to all participants. This reduces the cost to 2n bits per message

bit. In [31], Goel et al. use a star topology to achieve the same effect. One

of the participants collects all the outputs, computes the result and forwards

it to the other participants. The cost is again 2n bits per message bit.

The problem of these more efficient techniques is that there is no broad-

cast from the sender to recipients anymore, and an intermediary may falsify

the message.

24

3.5 Summary

The Dining Cryptographers protocol combines sender untraceabilty and re-

ceiver untraceability:

Sender untraceability is based on superposed sending. A key graph rep-

resents which pairs of participants share a secret key. The output of any

participant except the sender is a combination of his secret keys. The out-

put of the sender is a combination of his secret keys, plus his message. The

combination of all outputs make all the secret keys cancel, and the sender’s

message is revealed. For each round, participants must establish new secret

keys. Only one participant may send a message per round, otherwise mes-

sages collide. Therefore a reservation phase is used to anonymously reserve

rounds. A malicious participant may disrupt the communication by not

providing the correct output. The detection of such a disrupter is difficult.

Receiver untraceability is based on reliable broadcast. Every participant

receives the same data, so each one could be the receiver. Reliable broadcast

means that every honest participant receives the same data, and that if the

sender is honest, every honest participant receives the (unfalsified) data sent

by the sender. If a reliable broadcast is not physically guaranteed, we have

the byzantine generals problem. Byzantine agreement protocols are used to

realize a reliable broadcast in presence of the byzantine generals problem.

A fail-stop broadcast will interrupt communication, as soon as two honest

participants receive different values.

A simple combination of the two techniques is expensive in terms of

bandwidth. For n participants, n(n−1) bits have to be sent for one message

bit. If the message is computed by an intermediary, and then forwarded to

all participants, the costs go down to 2n. However, an intermediary may

then falsify the message.

25

Chapter 4

A Verifiable Dining

Cryptographers Protocol

The key idea presented in this chapter is a new method for superposed send-

ing, which is based on digital pseudonyms. We first present this method

based on the assumption that a reservation phase provides participants with

a digital pseudonym of the sender. Then we see how such a reservation can be

realized. Finally we show what are the possible effects for reliable broadcast,

and conclude by describing possible applications of the new methods.

4.1 Verifiable Superposed Sending

In this section we present how a new method for superposed sending, which

allows to generate verifiable outputs.

4.1.1 Purpose

A major problem of superposed sending (introduced in section 3.2) is the

disruption of the transmission by malicious participants who provide a wrong

output. Such malicious participants are called disrupters. Current methods

to detect disrupters are not very effective. Chaum’s method based on traps

requires multiple rounds to detect a disrupter, and the methods presented

by Golle and Juels [21] only limit the damage that a disrupter can cause.

We want a superposed sending technique which allows participants to

generate verifiable outputs. Each participant should be able to prove the

26

Output Proof

Output Proof

Output Proof

...

Output Proof







































Message

Figure 4.1: Participants generate outputs and prove correctness

correctness of his output. This is illustrated in Figure 4.1. This will dis-

courage malicious participant from providing wrong outputs, as it will be

possible to detect them immediately.

4.1.2 Preliminaries

The Diffie-Hellman key exchange and other cryptographic primitives are de-

scribed in appendix A. Proofs of knowledge are described in appendix B.

4.1.3 The Short DC-Net Protocol

It is possible to prove statements about outputs if they are of algebraic

structure. This idea was presented by Golle and Juels in [21]. We use their

’Short DC-Net Protocol’ as our starting point.

The Idea The idea is that participants establish their secret keys using

the Diffie-Hellman technique. A multiplicative group G = <g> is known to

all participants. Each participant Pi has a private key ai and a public key

gai . The secret key established between Pi and Pj is then Ki,j = gaiaj . We

define Si as the set containing the indexes of the participants with whom Pi

is sharing a secret key. The function sign(x) evaluates to 1 for x > 0, and to

−1 otherwise. Each participant Pi, except the sender, computes his output

27

by multiplying all his secret keys:

Oi =
∏

j∈Si

Ksign(j−i)
i,j =

∏

j∈Si

gaiajsign(j−i) =





∏

j∈Si

gaj sign(j−i)





ai

This output has an algebraic structure. More precisely, Oi is of the form

Y ai , where Y can be computed by everybody. We can use this property to

prove statements about Oi using zero-knowledge proof techniques, as we will

see later. First we have to see how we can extend the technique to multiple

rounds.

Multiple Rounds The Diffie-Hellman based technique that was just de-

scribed allows to generate one set of secret keys, but if we have multiple

rounds, we need a new set of secret keys for every round. To extend the

technique to multiple rounds, we use the multiplicative groups G = <g>

and H, and a bilinear map e : G × G → H, wherein e(gx, gy) = e(g, g)xy .

Additionally a public random generator is used, which provides a random

value R ∈ G for each round. The secret key established between Pi and Pj

is then Ki,j = e(gaiaj , R). The so obtained secret key is still based on the

Diffie-Hellman technique but it is randomised for every new round. If Pi is

not the sender, then his output is a multiplication of all his secret keys:

Oi =
∏

j∈Si

Ksign(j−i)
i,j =

∏

j∈Si

e(gaiaj , R)sign(j−i) = e





∏

j∈Si

gajsign(j−i), R





ai

This output has again the desired algebraic structure, so that we can prove

statements about it using zero-knowledge proof techniques, as we will see

next.

Proving Correctness of Outputs We can now use the algebraic struc-

ture of the outputs to construct proofs. The output Oi of each participant

Pi, except the sender, should be of the form Y ai . Everybody can compute

Y , and (g, gai) and are publicly known. The output Oi of every honest par-

ticipant, except the sender, must satisfy logY (Oi) = logg(g
ai). This can be

used to prove that an output is correct, without revealing ai. Using the

notation introduced by Camenisch and Stadler in [5] (described in appendix

B.3), this corresponds to the statement PK(α : (gα = gai) ∧ (Y α = Oi)).

28

The correct behaviour of participants cannot be verified by directly verifying

this statement, as it would prevent the sender from sending a message. The

statement is however very useful as a part of a larger proof. In the Short DC-

Net Protocol, n participants submit a vector containing n outputs at a time,

and they prove that n− 1 of these outputs are of the form Y ai . This means

that a participant can use one of the n outputs to send his message. As a

consequence, a disrupter can maximally create one collision per n rounds.

4.1.4 Remaining Problems

The Short DC-Net protocol presents very interesting ideas, but it has the

following problems.

A first problem is that no reservation is made, and collisions of messages

are accepted. Even it was extended with a reservation phase, a disrupter

would be able to disrupt 1 round out of n, while remaining undetected.

A second problem is coming from the bilinear map, which is used to

generate secret keys for multiple rounds. The only currently known ways

to realize a bilinear map are based on elliptic curve cryptography, and then

the group H is a group based on the elliptic curve. The secret keys and the

outputs are elements of H, but our messages usually are in Zp. The mapping

of messages from Zp to H and back again is not trivial, and we would like

to avoid this.

4.1.5 Our Solution

The Short DC-Net Protocol introduces interesting techniques, but because

of the remaining problems we need something else. This leaves us with the

questions: Can we create outputs of algebraic structure for multiple rounds,

without using a bilinear map? Can we add a reservation phase, and consider

the reservations in the proofs? We will now see what is possible if we assume

that we have a digital pseudonym of the sender.

Assumptions Let G = <g> be a group in which the Decision Diffie-

Hellman problem is assumed to be infeasible. We assume that G = <g>

is known to all participants. Each participant Pi has a private key ai and a

public key gai . Let us assume that from a reservation phase we have a digital

pseudonym of the sender gx which known to all participants, and only the

29

Digital pseudonym gx

public: ga1

private: a1
O1 = (gx)a1

public: ga2

private: a2,M, x
O2 =

M

(ga1ga3ga4 ...gan)x

public: ga3

private: a3
O3 = (gx)a3

public: ga4

private: a4
O4 = (gx)a4

... ...

public: gan

private: an
On = (gx)an

M =
∏n

i=1On

P1

P2

P3

P4

Pn

(sender)

Figure 4.2: Computing outputs based on a digital pseudonym

sender knows the private key x.

Computation of Outputs Using the digital pseudonym gx, a participant

Pi can establish a secret directly with the sender, and use this as his output:

Oi = (gx)ai

This output has the required algebraic structure. Furthermore, it is indistin-

guishable from a random output because the Decision Diffie-Hellman prob-

lem is infeasible in G = <g>. Let T denote the set containing the indexes

of all participants except the sender. The sender Pi computes his output to

contain his message M , as follows:

Oi =
M

(
∏

i∈T g
ai)x

The message M can then be obtained by multiplying all outputs. An example

is shown in Figure 4.2.

30

Multiple rounds If for every reservation a new digital pseudonym is cho-

sen, the outputs will be different for each round. The randomness is coming

from the digital pseudonym.

Proving Correctness of Outputs An output Oi is correct if it has the

form Oi = (gx)ai , or if Pi is the sender. This means that either log(gx)(Oi) =

logg(g
ai) or Pi knows x. Pi can prove that one of both statements is true,

without revealing which one, by proving the following statement:

PK{α : ((gα = gai) ∧ ((gx)α = Oi)) ∨ (gα = gx)}

How to prove this statement is given as an example at the end of appendix

B.3. We have achieved our goal, the outputs are indistinguishable from

random outputs, but verifiable.

4.1.6 Long Messages

If the messages are longer, of the form (M1,M2, ...,Mk) instead of just M ,

then it is possible to create multiple outputs (Oi1, Oi2, ..., Oik) from one digi-

tal pseudonym. Each participant Pi must have a secret vector (ai1, ai2, ..., aik)

and a corresponding public vector (gai1 , gai2 , ..., gaik), instead of having only

one private value ai and one public value gai . Then a new pair (ai, gai)

is used for each output. This allows to adjust the protocol to the desired

maximal message size.

4.1.7 Variations

We assumed until now, that the message is computed as a multiplication of all

outputs. As the sender knows the precise outputs of all other participants,

other functions of the more general form M = f(O1, O2, ..., On) are also

possible. The sender must then chose his output, such that the function

evaluates to his message.

4.1.8 Discussion

In our solution, all other participants use the Diffie-Hellman technique to

establish a shared secret with the sender, while keeping the identity of the

latter secret. This completely eliminates the need for pairs of participants

31

Rounds

Rounds

Before Reservation

After Reservation

Digital Pseudonyms
D1 D2 D3 D4

D2 = gx

?

Figure 4.3: Before and After Reservation

to share secret keys. Outputs are indistinguishable from random outputs

because of the Decision Diffie-Hellman assumption. The sender has more

knowledge than before, when the outputs were generated based on a key-

graph, as he knows in advance the precise outputs of all other participants.

This is not a problem, since he is the sender himself. Any other participant

does not have more information than before.

Until now, we assumed that we have a reservation phase which provides

us with the digital pseudonym of the sender. We will see next, how to

actually realize such a reservation phase.

4.2 Reservation

We assumed in the previous section that we had a reservation phase which

provides the participants with a digital pseudonym of the sender. In this

section we will see how this can be realized.

4.2.1 What We Need

Existing reservation techniques secretly inform each participant if he is the

sender or not. We need a reservation technique which informs each partici-

pant if he is the sender or not, and additionally provides every participant

with a digital pseudonym of the sender. This is illustrated in figure 4.3.

32

P1P1

P1

P2P2

P2

P3P3

P3

P4P4

P4

P5P5

P5

Figure 4.4: Mix based reservation

4.2.2 A Mixnet based Reservation

We present a solution which is based on a mixnet (illustrated in Figure 4.4).

Each participant first privately generates a digital pseudonym, then partic-

ipants use a mixnet to obtain a shuffled list of all their digital pseudonyms.

A mixnet is the best known practical method to obtain such a shuffled list.

Description Each participant Pi secretly chooses a number xi ∈ Zq, and

computes gxi . All participants send their values gxi through a mixnet to

get (D1,D2, ...,Dn), a permutation of (gx1 , gx2 , ..., gxn). To obtain computa-

tional security, a mixnet is used, in which each participant shuffles the list

one time, such that no trust in a set of mix owners is required. The values

D1,D2, ...,Dn are the digital pseudonyms and determine the order in which

the participants will send their messages. Each participant Pi recognises his

gxi , and knows which round he can use to send his message.

To prevent an attacker from reusing a digital pseudonym from another

participant, each participant Pi should generate a non-interactive proof of

knowledge of the secret key corresponding to his digital pseudonym (PK{α :

gxi = gα}) and send a packet through the mixnet which contains the public

key and the proof of knowledge, so that other participants can verify that the

participant who submitted a digital pseudonym also knows the corresponding

private key.

After receiving the list (D1,D2, ...,Dn), participants verify that every-

body received the same list, and each participant Pi verifies that his value

gxi is in the list.

33

Discussion For a computationally secure protocol, a mixnet seems to be

the best choice. A mixnet is naturally suited to do the reservation, since the

keys are small and of equal size. Each participant mixes the list one time, so

that no trust is required. The mixnet is only used to shuffle randomly gen-

erated keys, and no message information is send through the mixnet. This

has two advantages. First, reservations can be made long time before the

actual transmission of a message. Even if the reservation is a high latency

process, this has no negative impact on the latency of the transmission of

a message. Second, it is not necessary to use a verifiable mixnet, with zero

knowledge proofs about the inputs and the outputs of each mix. A verifica-

tion at the end is sufficient. If a participant sees that his key is not in the

list as it should, he can initiate an investigation phase. In order to find the

misbehaving mix, all participants disclose the values they used. This does

not compromise any message information, and the disclosed keys can just be

ignored and replaced by new ones. This means that a simple reencryption

mixnet can be used, which is easier to realize than a verifiable mixnet.

A possible alternative could be a reservation based on superposed receiv-

ing, but it would be more complicated to realize.

4.3 Effects on the Broadcast

The advantage of having a digital pseudonym of the sender for the broadcast,

is related to what as described in section 3.4. The sender can sign the mes-

sage, and a recipient can use the digital pseudonym to verify the signature.

This allows to realize efficient topologies, where for example one participant

collects all outputs, computes the message and sends it to all participants.

Because the message is signed, the intermediary can not replace the message

with a fake message.

To obtain a reliable broadcast, it is however still necessary to verify that

everybody received the same message. In case the intermediary was the ma-

licious sender, he could send different signed messages to different recipients.

4.4 Applications

In last chapter, we saw the fundamental principles of the new protocol. In

this chapter, we describe how this can be used to realize systems for:

34

• Electronic voting,

• Low latency anonymous communication, and

• Fast multiparty computation.

4.4.1 Electronic Voting

Using the new techniques to implement a simple electronic voting system is

straightforward. What is described next is illustrated in Figure 4.5.

First, the voters execute a reservation phase to obtain a list of digital

pseudonyms. Each voter has one digital pseudonym in the list. This list is

signed by all voters to ensure that the list is correct and that everybody has

the same list.

Then, each voter generates a ballot which contains an output and a proof

for each digital pseudonym. When a voter encounters his digital pseudonym,

he can cast his vote. All outputs look like random outputs, so that the vote

is not revealed. The proofs allow to verify that the voter behaved correctly.

Finally, all the ballots are combined and the votes appear. The votes are

pseudonymously signed, so it is possible to use the list of digital pseudonyms

to verify the pseudonymous signatures. This shows that each vote is orig-

inating from the voter who holds the secret key corresponding to the dig-

ital pseudonym. The signed list of digital pseudonyms and the list of the

pseudonymously signed votes can be used to prove the correctness of the

result to any third party.

The advantages of the proposed system are that it is easy to implement,

and that the result that can be used to prove the correctness of the results

to a third party. A disadvantage is that every voter must submit his ballot,

otherwise the votes cannot be computed.

4.4.2 Low Latency Anonymous Communication

We can also build low latency communication systems, using the techniques

described in previous chapter.

Reservation of Rounds As described previously, participants use a mixnet

to anonymously reserve the rounds for transmission. In communication

system, they just continuously generate new random keys and send them

35

Ballot

Output Proof

Output Proof

Output Proof

... ...

Output Proof

Ballot

Output Proof

Output Proof

Output Proof

... ...

Output Proof

Ballot

Output Proof

Output Proof

Output Proof

... ...

Output Proof

Ballot

Output Proof

Output Proof

Output Proof

... ...

Output Proof

...

︸ ︷︷ ︸

Vote Pseudonymous signature

Vote Pseudonymous signature

Vote Pseudonymous signature

... ...

Vote Pseudonymous signature

Digital Pseudonym

Digital Pseudonym

Digital Pseudonym

...

Digital Pseudonym

Signed by all participants

Figure 4.5: Electronic voting

36

through the mixnet. There will be an initial delay until the first set of keys

is coming out of the mixnet, but then each step provides a new set of digital

pseudonyms.

Transmission of Messages For the transmission of messages, partici-

pants can use a star or a tree topology. The combination of an pseudony-

mously signed message and the proofs that the individual values are correct,

allows to efficiently aggregate the values and broadcast the message. This

is described in the next paragraphs, and it is illustrated in Figure 4.6. (We

us the notation defined in the appendix A.3.3, and yi is the public key of

participant Pi).

A message is pseudonymously signed by the respective sender. Interme-

diary nodes can then aggregate the received outputs with their own and

forward the result. The participant at the root of the tree computes the mes-

sage and verifies the signature. If the signature is not valid, an investigation

phase is started and the participants must provide the proofs that their val-

ues were correct. If the signature is valid, then the pseudonymously signed

message is sent to the other participants. Each participant uses again the

signature to verify that the root did not cheat. This gives total bandwidth

costs that are linear relative to the number of participants.

To achieve receiver untraceability, participants must ensure that all of

them received the same message. Otherwise a malicious sender could gener-

ate several signed messages, and provide different participants with different

messages. Therefore, after reception of the message, each participant gen-

erates a signature of the message he received and forwards his signature to

all other participants. Using aggregate signatures (see appendix A.3.5), par-

ticipants can use the same star or tree topology that they use for message

transmission to combine and broadcast these signatures.

Traffic Announcement It is possible to announce the traffic, in order to

efficiently use the available bandwidth. This is especially useful for large mes-

sages. In a system without traffic announcement, as illustrated in Figure 4.7,

a message is transmitted for each digital pseudonym, and all these messages

are of the same size. In a system with traffic announcement, we will have

two phases, illustrated in Figure 4.8. First, we make traffic announcements,

in which each sender indicates the size of his message. Then, the messages

37

P1

P2

P3

P4

P5

P6

P7

O1

O3

O1O2O3

O5

O7

O5O6O7

Pseudonymously signed
message {M,SD(M)}
= O1O2O3O4O5O6O7

P1

P2

P3

P4

P5

P6

P7

{M,SD(M)}

{M,SD(M)}

{M,SD(M)}

{M,SD(M)}

{M,SD(M)}

{M,SD(M)}

Pseudonymously signed
message {M,SD(M)}
= O1O2O3O4O5O6O7

P1

P2

P3

P4

P5

P6

P7

Sy1(M)

Sy3(M)

Sy1y2y3(M)

Sy5(M)

Sy7(M)

Sy5y6y7(M)

Signature of
all participants
Sy1y2y3y4y5y6y7(M)

P1

P2

P3

P4

P5

P6

P7

Sy1y2y3y4y5y6y7(M)

Sy1y2y3y4y5y6y7(M)

Sy1y2y3y4y5y6y7(M)

Sy1y2y3y4y5y6y7(M)

Sy1y2y3y4y5y6y7(M)

Sy1y2y3y4y5y6y7(M)

Signature of
all participants
Sy1y2y3y4y5y6y7(M)

Digital pseudonym D

Figure 4.6: Transmission in a tree topology

38

D1 D2 D3 D4 D5 D6

M1 M2 M3 M4 M5 M6

Digital pseudonyms

︸ ︷︷ ︸

Messages of fixed size

Figure 4.7: Message transmission without traffic announcement

D1 D2 D3 D4 D5 D6

T1 T2 T3 T4 T5 T6 M1 M3 M5 M6

Digital pseudonyms

︸ ︷︷ ︸

Messages of variable size

︸ ︷︷ ︸

Traffic announcement

Figure 4.8: Message transmission with traffic announcement

are transmitted according to the announced sizes. So, participants which do

not have a message to transmit do not unnecessarily waste bandwidth. The

message size can be arbitrarily long, and the interval between the reserva-

tion (an traffic announcement) steps can be chosen. This allows to realize

networks with a high number of participants, which use low bandwidth when

nobody is sending a message.

Comparison with Mixnets The new solution is much more flexible than

a mixnet of the same level of security. It allows to obtain a better perfor-

mance in terms of bandwidth usage and latency. A mixnet is sequential,

and for n participants to achieve computational security (without trust), a

mixnet will require n steps. The new solution works with any tree topology,

so the latency can be chosen to be very low. It should for example be pos-

sible for two participants to communicate using Voice Over IP technologies,

without having annoying transmission delays. Mixnets also require to have

one message from each participant, and the messages must all be of the same

size. The new solution allows to use messages of variable size, and to use

traffic announcement techniques to efficiently use the bandwidth.

39

Output Proof

Output Proof

Output Proof

...

Output Proof





































Message

Pseudonymous Signature

Digital Pseudonym

Figure 4.9: Usage of a Digital Pseudonym of the Sender

4.4.3 Secure Multi-Party Computation

Another area of application is secure multi-party computation, first presented

by Yao in [36]. Participants perform a computation where the input from

each participant remains secret, and where only the result is publicly known.

Sometimes intermediary results have to be passed through a mixnet. The

sequential mixing is time consuming and slows down the multiparty compu-

tation. The techniques presented herein allow to realize mixing rounds with

a very low latency, which makes these multiparty computations faster.

4.5 Summary

In this chapter we presented verifiable superposed sending, a computationally

secure version of superposed sending, which allows participants to generate

verifiable outputs. We used a digital pseudonym, which is a public key of

the form gx, and only the anonymous sender know the corresponding secret

key x. This digital pseudonym is very useful, as illustrated in figure 4.9.

Participants use the digital pseudonym and the Diffie-Hellman key exchange

to establish a shared secret with the sender, while keeping the identity of the

latter secret. This allows to generate outputs of algebraic structure, which

are indistinguishable from random outputs in a group where the Decision

Diffie Hellman problem is assumed to be infeasible. The discrete logarithms

40

based nature of the digital pseudonym and of the outputs allows to use

standard proof techniques to prove statements about them. A participant

can prove that he participated correctly, without revealing if he is the sender

or not. The sender can also use his private key x to sign his message, and

all other participants can verify the signature using the digital pseudonym.

This allows combine computation and broadcast, which reduces bandwidth

usage. For example one participant can collect all the outputs, compute the

message and then forward it to the other participants. The pseudonymous

signature allows other participants to verify that the intermediary did not

cheat, and that the message is really coming from the sender. We saw how

to obtain a digital pseudonym from the sender, using a reservation phase

based on a mixnet. The new methods can be applied to electronic voting,

low latency anonymous communication, and multiparty computation.

41

Chapter 5

Conclusions

Our initial problem was the detection of malicious participants which dis-

rupt communication in a dining cryptographers protocol by providing wrong

outputs. We presented the verifiable superposed sending technique, which

allows participants to prove the correctness of their outputs, without compro-

mising the anonymity of the sender. This solves our problem, as disrupters

are now immediately detectable. The possibility to verify the correct be-

haviour of a participant, which exists for many years in mix based networks,

is now available in the dining cryptographers protocol, which makes it a

practicable alternative to mixnets. In fact, it can even outperform a mixnet

in terms of latency, and it allows to use traffic announcement techniques

to keep the bandwidth usage low. We presented possible applications of

our new techniques in the fields of electronic voting, low latency anonymous

communication and secure multi-party computation.

Interesting activities for future research, are the study of the behaviour of

our techniques in a real network. Especially the presented idea for a low la-

tency anonymous communication systems, in combination with the presented

traffic announcement technique, has the potential to generate interesting ap-

plications, for a high number of anonymous senders and recipients.

42

Bibliography

[1] M. Bellare. O. Goldreich. On defining proofs of knowledge. In Advances
in Cryptology-CRYPTO ’92, volume 740, pages 390–420, 1992.

[2] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm
for designing efficient protocols. In Proceedings of the 1st ACM con-
ference on Computer and communications security, pages 62–73. ACM
New York, NY, USA, 1993.

[3] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. A survey of two
signature aggregation techniques. RSA CryptoBytes, 6(2):1–10, 2003.

[4] J. Bos and B. den Boer. Detection of disrupters in the DC protocol.
Advances in Cryptology–EUROCRYPT’89, pages 320–327, 1989.

[5] J. Camenisch and M. Stadler. Efficient Group Signature Schemes for
Large Groups. LECTURE NOTES IN COMPUTER SCIENCE, pages
410–424, 1997.

[6] J. Camenisch and M. Stadler. Proof systems for general statements
about discrete logarithms. Technical Report TR 260, Institute for The-
oretical Computer Science, ETH Zurich, Mar. 1997.

[7] D. Chaum. The dining cryptographers problem: Unconditional sender
and recipient untraceability. Journal of Cryptology, 1(1):65–75, 1988.

[8] D. Chaum and T.P. Pedersen. Wallet Databases with Observers. LEC-
TURE NOTES IN COMPUTER SCIENCE, pages 89–89, 1993.

[9] D.L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–88, 1981.

[10] R.J.F. Cramer. Modular design of secure yet practical cryptographic
protocols. Universiteit van Amsterdam, 1997.

[11] I. Damgard. Discrete log based cryptosystems. Manuscript, www. daimi.
au. dk/ivan/DL. pdf, 31, 2004.

43

[12] W. Diffie and M. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[13] D. Dolev and H.R. Strong. Authenticated Algorithms for Byzantine
Agreement. SIAM J. Comput., 12(4):656–666, 1983.

[14] D. Dolev and A. Yao. On the security of public key protocols. Informa-
tion Theory, IEEE Transactions on, 29(2):198–208, 1983.

[15] M. Robson E. G. Sirer, M. Polte. Cliquenet: A self-organizing, scalable,
peer-to-peer anonymous communication substrate. 2001.

[16] T. El Gamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. Proceedings of CRYPTO 84 on Advances in
cryptology, pages 10–18, 1985.

[17] A. Fiat and A. Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Advances in Cryptology,
volume 86, pages 186–194. Springer, 1986.

[18] V. Fusenig, D. Spiewak, and T. Engel. Acimn protocol: A protocol for
anonymous communication in multi hop wireless networks. In Informa-
tion Security 2008, volume 81. Conferences in Research and Practice in
Information Technology (CRPIT), 2008.

[19] D. Goldschlag, M. Reed, and P. Syverson. Hiding Routing Information.
LECTURE NOTES IN COMPUTER SCIENCE, pages 137–150, 1996.

[20] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity
of interactive proof-systems. In Proceedings of the seventeenth annual
ACM symposium on Theory of computing, pages 291–304. ACM New
York, NY, USA, 1985.

[21] P. Golle and A. Juels. Dining Cryptographers Revisited. Advances in
cryptology-EUROCRYPT 2004: International Conference on the The-
ory and Applications of Cryptographic Techniques, Interlaken, Switzer-
land, May 2-6, 2004: Proceedings, 2004.

[22] M. Jakobsson, A. Juels, and R.L. Rivest. Making Mix Nets Robust for
Electronic Voting by Randomized Partial Checking. In Proceedings of
the 11th USENIX Security Symposium, pages 339–353. USENIX Asso-
ciation Berkeley, CA, USA, 2002.

[23] A. Joux and K. Nguyen. Separating Decision Diffie–Hellman from Com-
putational Diffie–Hellman in Cryptographic Groups. Journal of Cryp-
tology, 16(4):239–247, 2003.

44

[24] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals
Problem. ACM Transactions on Programming Languages and Systems
(TOPLAS), 4(3):382–401, 1982.

[25] C. Park, K. Itoh, and K. Kurosawa. Efficient anonymous channel and
all/nothing election scheme. Workshop on the theory and application
of cryptographic techniques on Advances in cryptology, pages 248–259,
1994.

[26] M. Pease, R. Shostak, and L. Lamport. Reaching Agreement in the
Presence of Faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

[27] A. Pfitzmann. How to implement ISDNs without user observability—
Someremarks. ACM SIGSAC Review, 5(1):19–21, 1987.

[28] A. Pfitzmann. Diensteintegrierende Kommunikationsnetze mit teil-
nehmerüberprüfbarem Datenschutz. Springer, 1990.

[29] A. Pfitzmann and M. Kohntopp. Anonymity, Unobservability, and
Pseudonymity-A Proposal for Terminology.

[30] M.K. Reiter and A.D. Rubin. Crowds: anonymity for Web transac-
tions. ACM Transactions on Information and System Security, 1(1):66–
92, 1998.

[31] M. Polte S. Goel, M. Robson and E. G. Sirer. Herbivore: A scalable
and efficient protocol for anonymous communication. 2002.

[32] CP Schnorr. Efficient identification and signatures for smart cards. In
Advances in Cryptology–EUROCRYPT’89: Proceedings. Springer Ver-
lag, 1990.

[33] C. Studholme and I. Blake. Multiparty Computation to Generate Secret
Permutations. 2007.

[34] M. Waidner. Unconditional Sender and Recipient Untraceability in spite
of Active Attacks. Lecture Notes in Computer Science, 434:302, 1990.

[35] M. Waidner and B. Pfitzmann. The Dining Cryptographers in the Disco:
Unconditional Sender and Recipient Untraceability with Computation-
ally Secure Serviceability. Advances in Cryptology - EUROCRYPT,
89:10–13, 1989.

[36] A.C. Yao. Protocols for secure computations. In Proceedings of the 23rd
Annual IEEE Symposium on Foundations of Computer Science, pages
160–164, 1982.

45

Appendix A

Cryptographic Primitives

A.1 Computationally Hard Problems

It is possible to chose G = <g>, a group of large prime order, such that for
x, y ∈ Z and z ∈ G, the following problems are hard:

• Discrete logarithm (DL) problem:

given (g, gx), find x

• Computational Diffie-Hellmann (CDH) problem:

given (g, gx, gy), find gxy

• Decision Diffie-Hellmann (DDH) problem:

given (g, gx, gy , z), decide if z = gxy

The problems are dependent on each other. For the DDH problem to be
hard, the CDH problem must be hard, and for the CDH problem to be hard,
the DL must be hard.

If a problem is hard or not, depends on the choice of the group G. Typ-
ically it is possible to use finite fields based on integers or based on elliptic
curves. To achieve the same level of security, integer based groups require
more bits than elliptic curve based groups. However integer based groups
are simpler to implement, and one example can be found in [11].

Gap Diffie-Hellman Groups and Bilinear Maps A group in which the
CDH is hard and in which the DDH is easy, is called a Gap Diffie-Hellman
group. The only known way to implement such a group is based on elliptic
curve cryptography. It is possible to define a bilinear map e : G×G → GT ,

46

with G = <g>, such that the CDH is hard in G, and that:

e(gxy, g) = e(gy , gx)

The DDH can be solved by comparing e(z, g) and e(gx, gy), so G is a Gap
Diffie-Hellman group. More information can be found in [23].

A.2 Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange was presented by Whitfield Diffie and Mar-
tin Hellman in their famous paper [12]. It allows two participants to establish
a shared secret over an insecure channel.

1. Alice and Bob share a group G = <g>, in which the Computational
Diffie-Hellmann (CDH) problem is assumed to be infeasible.

2. Alice chooses a random value a.
Bob chooses a random value b.

3. Alice sends ga to Bob.
Bob sends gb to Alice.

4. Alice computes (gb)a.
Bob computes (ga)b.

5. The secret value gab = (gb)a = (ga)b is shared by Alice and Bob.

A.3 Public Key Encryption Schemes

In a public key encryption scheme, there is a key pair consisting of a private
key x and a public key y. A randomization value r is used to obtain different
ciphertexts for multiple encryptions of the same message. The encryption of
the message m using the public key y and the randomization r is written:

Ey(m, r)

The decryption of the cipertext c using the private key x is written:

Dx(c)

A.3.1 El Gamal Encryption

The El Gamal encryption is a public key encryption system based on the
Diffie-Hellman key exchange [16].

1. Initially: A group G = <g> is publicly known.

47

2. Public key generation: A secret key x is chosen, and the public key is
y = gx.

3. Encryption: To encrypt a message m, a random value r is chosen, and
the ciphertext (c1, c2) is computed with (c1, c2) = Ey(m, r) = (gr, yrm).

4. Decryption: From the ciphertext (c1, c2), the message m is obtained
by computing m = Dx(c1, c2) = c2/cx1 .

To achieve semantic security, a group G must be used in which the Deci-
sion Diffie-Hellmann (DDH) problem is assumed to be infeasible.

A.3.2 Homomorphic Encryption

A homomorphic encryption scheme is an encryption scheme, in which we
have the following property:

Ey(m1, r1)" Ey(m2, r2) = Ey(m1 ⊗m2, r1 ⊕ r2)

The operations ", ⊗ and ⊕ depend on the specific encryption scheme that
is used.

El Gamal based Homomorphic Encryption In the El Gamal encryp-
tion scheme, we have Ey(m, r) = (gr, yrm). We can create an El Gamal
based homomorphic encryption scheme by defining · to be the pairwise mul-
tiplication of ciphertext elements. This gives the following property:

Ey(m1, r1) · Ey(m2, r2) = (gr1 , yr1m1) · (g
r2 , yr2m2)

= (gr1+r2 , yr1+r2m1m2)

= Ey(m1m2, r1 + r2)

A.3.3 Public Key Signature Schemes

In a public key signature scheme, there is a key pair consisting of a private
key x and a public key y. It is possible to create a signature for message using
the private key x. The authenticity of the signature can then be verified with
the public key y. The signature of the message m using the private key x is
written:

Sy(m)

A.3.4 El Gamal Signature Scheme

The El Gamal signature is a public key signature scheme based on the dis-
crete log problem [16].

1. Initially: A group G = <g> is publicly known.

48

2. Public key generation: A secret key x is chosen, and the public key is
y = gx.

3. Signature: A random value r is chosen, and the signature (s1, s2) of a
message m is then computed by (s1, s2) = Sy(m) = (gr,H(m)− xgr).

4. Verification: The signature Sy(m) = (s1, s2) is valid if gH(m) = ys1ss21 .

A.3.5 Aggregate Signatures

An aggregate signature scheme allows to combine the signatures of multiple
participants. This allows to sign a message multiple times, without increasing
its size. In [3], an aggregate signature scheme is described, which is based
on bilinear maps. A single signature is generated with the following steps:

1. Initially: A bilinear map e : G×G → GT , with G = <g>, and where
the CDH is hard in G (see A.1).

2. Public key generation: A secret key x ∈ Z is chosen, and the public
key is y = gx.

3. Signature: A random value r is chosen, and the signature s of a message
m is then computed by s = Sy(m) = H(y,m)x.

4. Verification: The signature Sy(m) = s is valid if e(H(m, y), y) =
e(s, g).

Several signatures can now be aggregated as follows:

Sy1y2...yn(m) = H(y1,m)x1 · H(y2,m)x2 · ... · H(yn,m)xn

= Sy1(m) · Sy2(m) · ... · Syn(m)

To verify the aggregated signature AS = Sy1y2...yn(m), the verifier checks
if:

n
∏

i=1

e(H(m, yi), yi) = e(AS, g)

49

Appendix B

Proofs of Knowledge

B.1 Zero-Knowledge Proofs of Knowledge

An interactive proof allows a prover to prove a statement to a verifier. It
can be used to verify that a party correctly participated in the execution of
a protocol, without disclosing the details of his action. An interactive proof
has the following properties:

1. Completeness: A honest prover can convince a verifier of the correct-
ness of a true statement.

2. Soundness: A cheating prover cannot convince a honest verifer of the
correctness of a false statement.

Proofs of Knowledge The concept of a "proof of knowledge" was intro-
duced by Goldwasser et al. in [20], and defined by Bellare and Goldreich in
[1]. Informally, a proof of knowledge allows a prover to prove to a verifier
that he knows a witness which verifies a given statement.

Zero-Knowledge Proofs A zero-knowledge proof allows a prover to prove
to a verifier that a statement is true, without giving the verifier any other in-
formation. This means that the proof does not enable the verifier to compute
anything that he could not have computed before. There exist many flavors
of zero-knowledge. As we try to realize a protocol that is computationally
secure, zero knowledge in our context means computational zero-knowledge.

B.2 Sigma Protocols

A sigma protocol [10], illustrated in Figure B.1, is a three step proof protocol,
which contains the three steps of: commitment, challenge and response, and
which has the following properies:

50

Commitment (t)

Challenge (c)

Response (r)

Prover Verifier

Figure B.1: A sigma (Σ) protocol

1. Completeness: A honest prover can convince a verifier of the correct-
ness of a true statement.

2. Special Soundness: Two successful conversations (t, c, r) and (t, c′, r′),
with c *= c′ allow to compute the witness.

3. Special Honest Verifier Zero-Knowledge: There exists a simulator which
on an input c can produce (t, c, r), which looks like a real conversation
with the real prover.

Honest Verifier Zero-Knowledge A honest verifier is supposed to chose
his challenge randomly. A proof where a dishonest verifier could get some
knowledge by choosing c in a special way, is called a honest-verifier zero
knowledge (HVZK) proof. As one cannot expect the verifier to be honest,
HVZK proofs may seem uninteresting a first sight. It is however possible
to transform these proofs into non-interative proofs, which eliminates the
problem of the dishonest verifiers.

Non Interactive Sigma Protocol The Fiat Shamir heuristic is a tech-
nique that allows to turn a three step sigma protocol into a non-interactive
(one step) protocol. The challenge is generated by the prover using a hash
function, with c = H(t). The prover then transmits (c, r) to the verifier in
one step. The Fiat-Shamir heuristic was presented in [17] and is provably
secure in the random oracle model [2]. The term heuristic is due to the fact
that a hash function is used instead of a real random oracle.

B.3 Proving Statements about Discrete Logarithms

It is possible to use sigma protocols to prove general statements about dis-
crete logarithms. It is for example possible to prove: knowledge of the
discrete log of a value to a base, equality of discrete logs to different bases,
and logical combinations thereof. A system for proving general statements
about discrete logarithms is presented in [6].

51

Notation

He will use hereinafter a notation introduced by Camenisch and Stadler in
[5]. The notation is illustrated by the following examples. The secrets are
represented by greek symbols, and the known values are represented by non-
greek symbols.

• Proof of knowledge of the discrete logarithm of y to the base g:

PK{α : y = gα}

• Proof of knowledge of the discrete logarithm of y1 to the base g1 and
of the discrete logarithm of y2 to the base g2:

PK{(α,β) : (y1 = g1
α) ∧ (y2 = g2

β)}

• Equivalence of the discrete logarithms of y1 to the base g1 and of y2 to
the base g2:

PK{α : (y1 = gα1) ∧ (y2 = gα2)}

Examples

Example 1 Proof of knowledge of the discrete logarithm of y to the base
g:

PK{α : y = gα}

1. The prover randomly choses a ∈ Z, computes t = ga and sends t to
the verifier.

2. The verifier randomly choses c ∈ Z, and sends c to the prover.

3. The prover computes r = a+ cα, and sends r to the verifier.

4. The verifier accepts if gr = tyc.

This proof was introduced in [32] and is known as the Schnorr protocol.
If we apply the Fiat-Shamir heuristic, we obtain:

1. The prover randomly choses a ∈ Z, and computes t = ga.

2. The prover computes c = H(t).

3. The prover computes r = a+ cα, and sends (c, r) to the verifier.

4. The verifier computes t′ = gry−c and accepts if H(t′) = c.

52

Example 2 Proof of the equality of discrete logarithms to different bases
(logg1 y1 = logg2 y2):

PK{α : (y1 = gα1) ∧ (y2 = gα2)}

1. The prover randomly choses a ∈ Z, computes t1 = g1a, t2 = g2a and
sends (t1, t2) to the verifier.

2. The verifier randomly choses c ∈ Z, and sends c to the prover.

3. The prover computes r = a+ cα, and sends r to the verifier.

4. The verifier accepts if g1r = t1y1c and g2r = t2y2c.

If we apply the Fiat-Shamir heuristic, we obtain:

1. The prover randomly choses a ∈ Z, computes t1 = g1a, t2 = g2a.

2. The prover computes c = H(t1, t2).

3. The prover computes r = a+ cα, and sends (c, r) to the verifier.

4. The verifier computes t1′ = g1ry1−c, t2′ = g2ry2−c and accepts if
H(t′1, t

′
2) = c.

This principle was described in [8], and is known as the Chaum Pedersen
proof. Here it is only optimized by passing (c, r) instead of (t1, t2, r) to the
verifier.

Example 3 Proof of knowledge of the discrete logarithm of y1 to the base
g1, or of y2 to the base g2:

PK{α : (y1 = gα1) ∨ (y2 = gα2)}

• If the prover knows α, such that y1 = gα1 :

1. The prover randomly choses a, r2, c2 ∈ Z, computes t1 = g1a, t2 =
g2r2y2−c2 and sends (t1, t2) to the verifier.

2. The verifier randomly choses c ∈ Z, and sends c to the prover.

3. The prover computes c1 = c − c2, r1 = a + c1α and sends
(c1, c2, r1, r2) to the verifier.

4. The verifier accepts if c = c1 + c2, g1r1 = t1y1c1 and g2r2 = t2y2c2 .

• If the prover knows α, such that y2 = gα2 :

1. The prover randomly choses a, r1, c1 ∈ Z, computes t1 = g1r1y1−c1 , t2 =
g2a and sends (t1, t2) to the verifier.

53

2. The verifier randomly choses c ∈ Z, and sends c to the prover.

3. The prover computes c2 = c − c1, r2 = a + c2α and sends
(c1, c2, r1, r2) to the verifier.

4. The verifier accepts if c = c1 + c2, g1r1 = t1y1c1 and g2r2 = t2y2c2 .

The prover decomposes the challenge c into the challenges c1 and c2, such
that c = c1+ c2. He can then choose the value of either c1 or c2, but he must
must have the secret knowledge to respond to the remaining challenge.

If we apply the Fiat-Shamir heuristic, we obtain:

• If the prover knows α, such that y1 = gα1 :

1. The prover randomly choses a, r2, c2 ∈ Z, computes t1 = g1a, t2 =
g2r2y2−c2 .

2. The prover computes c = H(t1, t2).

3. The prover computes c1 = c − c2, r1 = a + c1α and sends
(c1, c2, r1, r2) to the verifier.

4. The verifier computes t1′ = g1r1y1−c1 , t2′ = g2r2y2−c2 and accepts
if H(t′1, t

′
2) = c1 + c2.

• If the prover knows α, such that y2 = gα2 :

1. The prover randomly choses a, r1, c1 ∈ Z, computes t1 = g1r1y1−c1 , t2 =
g2a.

2. The prover computes c = H(t1, t2).

3. The prover computes c2 = c − c1, r2 = a + c2α and sends
(c1, c2, r1, r2) to the verifier.

4. The verifier computes t1′ = g1r1y1−c1 , t2′ = g2r2y2−c2 and accepts
if H(t′1, t

′
2) = c1 + c2.

Example 4 Proof of knowledge of the following statement:

PK{α : (y1 = gα1) ∨ ((y2 = gα2) ∧ (y3 = gα3))}

• If the prover knows α, such that y1 = gα1 :

1. The prover randomly choses a, r2, c2 ∈ Z, computes t1 = g1a, t2 =
g2r2y2−c2 , t3 = g3r2y3−c2 and sends (t1, t2, t3) to the verifier.

2. The verifier randomly choses c ∈ Z, and sends c to the prover.

3. The prover computes c1 = c − c2, r1 = a + c1α and sends
(c1, c2, r1, r2) to the verifier.

4. The verifier accepts if c = c1+ c2, g1r1 = t1y1c1 , g2r2 = t2y2c2 and
g3r2 = t3y3c2 .

54

• If the prover knows α, such that y2 = gα2 :

1. The prover randomly choses a, r1, c1 ∈ Z, computes t1 = g1r1y1−c1 , t2 =
g2a, t3 = g3a and sends (t1, t2, t3) to the verifier.

2. The verifier randomly choses c ∈ Z, and sends c to the prover.

3. The prover computes c2 = c − c1, r2 = a + c2α and sends
(c1, c2, r1, r2) to the verifier.

4. The verifier accepts if c = c1+ c2, g1r1 = t1y1c1 , g2r2 = t2y2c2 and
g3r2 = t3y3c2 .

If we apply the Fiat-Shamir heuristic, we obtain:

• If the prover knows α, such that y1 = gα1 :

1. The prover randomly choses a, r2, c2 ∈ Z, computes t1 = g1a, t2 =
g2r2y2−c2 , t3 = g3r2y3−c2 and sends (t1, t2, t3) to the verifier.

2. The prover computes c = H(t1, t2, t3).

3. The prover computes c1 = c − c2, r1 = a + c1α and sends
(c1, c2, r1, r2) to the verifier.

4. The verifier computes t1′ = g1r1y1−c1 , t2′ = g2r2y2−c2 , t3′ =
g3r2y3−c2 and accepts if H(t′1, t

′
2, t

′
3) = c1 + c2.

• If the prover knows α, such that y2 = gα2 :

1. The prover randomly choses a, r1, c1 ∈ Z, computes t1 = g1r1y1−c1 , t2 =
g2a.

2. The prover computes c = H(t1, t2, t3).

3. The prover computes c2 = c − c1, r2 = a + c2α and sends
(c1, c2, r1, r2) to the verifier.

4. The verifier computes t1′ = g1r1y1−c1 , t2′ = g2r2y2−c2 , t3′ =
g3r2y3−c2 and accepts if H(t′1, t

′
2, t

′
3) = c1 + c2.

55

