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•  What	
  is	
  Big	
  Data	
  
•  Big	
  Data	
  Analysis	
  in	
  the	
  team	
  

–  Call	
  Details	
  record	
  at	
  a	
  country	
  level	
  
–  Analysis	
  of	
  Network	
  traffic	
  –	
  research	
  done	
  at	
  SnT	
  

Outline	
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Big	
  Data	
  at	
  a	
  glance	
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What	
  are	
  	
  Big	
  Data	
  Architectures	
  ?	
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Phases	
  in	
  Big	
  Data	
  Processing	
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Map-­‐Reduce	
  –	
  the	
  holy	
  grail	
  in	
  Big	
  Data	
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Big	
  Data	
  is	
  more	
  then	
  simple	
  HPC	
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The	
  current	
  Eco-­‐System	
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•  One	
  country	
  :	
  Ivory	
  Cost	
  
•  Time	
  Period:	
  01.12.2011	
  to	
  28.04.2012	
  
•  5	
  million	
  users	
  
•  1124	
  base	
  sta1ons	
  (for	
  mobile	
  communica1ons)	
  
•  More	
  then	
  3	
  billions	
  entries	
  summarizing	
  on	
  a	
  hourly	
  basis	
  the	
  

SMS	
  and	
  Voice	
  Calls	
  	
  
•  50000	
  mobile	
  users	
  tracked	
  over	
  these	
  months	
  with	
  GPS	
  and	
  

call	
  records	
  
	
  	
  	
  

Anomaly	
  Detec1on	
  in	
  large	
  scale	
  CDR	
  records	
  
	
  
David	
  Goergen,	
  Radu	
  State,	
  Thomas	
  Engel	
  and	
  Veena	
  MENDIRATTA	
  (Bell	
  Labs,	
  USA)	
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What	
  happened	
  in	
  the	
  Ivory	
  Cost	
  in	
  2012	
  ?	
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The	
  silent	
  base	
  sta1ons……	
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Strange	
  calling	
  behaviors…..at	
  2	
  AM.	
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Where	
  is	
  most	
  variability	
  in	
  the	
  data	
  ?	
  
PCA	
  analysis	
  on	
  the	
  dura1on	
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Cloud	
  and	
  Service	
  Management	
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•  ALTO solves the general rendezvous problem: Given a choice of resources, which one is the 
best candidate? 

–  Normalized costs: Type: What does the cost represent?  ( Air-miles, hop count, ...) 

-  Numerical (virtual coordinates) 

-  Ordinal(position-based preferences) 

 

Graphics sources: 
http://pubs.vmware.com/vi301/intro/images/Introduction_chapter.3.2.1.jpg 

Datacenter 1 

Datacenter 2 

Datacenter 3 

2 main abstractions: 

-  Network Map 

-  Cost Map 

Network specified in terms of 
Partition/Provider ID (PID): 
aggregation of endpoints 
identified by a provider-
defined network location 
identifier. 

ALTO 
service 
discovery 

ALTO 
client 

Dynamic 
network 
information Provisioning 

policies 

Routing 
protocols 



Op1miza1on	
  of	
  service	
  provisioning	
  (Cloud,	
  
CDNs)	
  over	
  large	
  ISPs	
  and	
  networks	
  

	
  

•  FCC	
  Dataset	
  specifica1on	
  (200	
  
GB/year)	
  

–  FCC	
  has	
  embarked	
  on	
  a	
  na1onwide	
  
performance	
  study	
  of	
  residen1al	
  wireline	
  
broadband	
  service	
  

–  Aim	
  is	
  to	
  use	
  the	
  raw	
  datasets	
  from	
  this	
  
study	
  for	
  analysis	
  and	
  to	
  create	
  ALTO	
  
topology	
  map	
  and	
  a	
  cost	
  map	
  from	
  this	
  
dataset	
  

–  Using	
  a	
  canonical	
  Map-­‐Reduce	
  (Big	
  Data)	
  
computa1onal	
  paradigm	
  on	
  a	
  Hadoop	
  
cluster	
  	
  

•  Major	
  outcomes	
  
–  Financial	
  modeling	
  with	
  Sharpe	
  ra1os	
  to	
  

build	
  third	
  par1es	
  ALTO	
  maps	
  that	
  takes	
  
both	
  bandwidth	
  and	
  latency	
  into	
  account	
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Cablevision Charter Comcast Cox Embarq MCI Mediacom TimeWarner Windstream Default
Cablevision 0.000 0.799 0.804 0.796 0.377 0.700 0.316 0.508 0.782 1.000
Charter 0.498 0.000 0.804 0.796 0.377 0.700 0.316 0.508 0.782 1.000
Comcast 0.498 0.799 0.000 0.796 0.377 0.700 0.316 0.508 0.782 1.000
Cox 0.498 0.799 0.804 0.000 0.377 0.700 0.316 0.508 0.782 1.000
Embarq 0.498 0.799 0.804 0.796 0.000 0.700 0.316 0.508 0.782 1.000
MCI 0.498 0.799 0.804 0.796 0.377 0.000 0.316 0.508 0.782 1.000
Mediacom 0.498 0.799 0.804 0.796 0.377 0.700 0.000 0.508 0.782 1.000
TimeWarner 0.498 0.799 0.804 0.796 0.377 0.700 0.316 0.000 0.782 1.000
Windstream 0.498 0.799 0.804 0.796 0.377 0.700 0.316 0.508 0.000 1.000

Table III: Cost map for upload bandwidth (Cu)

Cablevision Charter Comcast Cox Embarq MCI Mediacom TimeWarner Windstream Default
Cablevision 0.00 1.67 1.81 1.10 1.41 0.86 1.32 0.32 1.38 2.00
Charter 0.76 0.00 1.81 1.10 1.41 0.86 1.32 0.32 1.38 2.00
Comcast 0.76 1.67 0.00 1.10 1.41 0.86 1.32 0.32 1.38 2.00
Cox 0.76 1.67 1.81 0.00 1.41 0.86 1.32 0.32 1.38 2.00
Embarq 0.76 1.67 1.81 1.10 0.00 0.86 1.32 0.32 1.38 2.00
MCI 0.76 1.67 1.81 1.10 1.41 0.00 1.32 0.32 1.38 2.00
Mediacom 0.76 1.67 1.81 1.10 1.41 0.86 0.00 0.32 1.38 2.00
TimeWarner 0.76 1.67 1.81 1.10 1.41 0.86 1.32 0.00 1.38 2.00
Windstream 0.76 1.67 1.81 1.10 1.41 0.86 1.32 0.32 0.00 2.00

Table IV: Cost map for latency (Cl)

as a distance from the default cost. The latency cost for each
PID, Ci

l , is calculated in a similar manner. The computations
of Equations 2 and 3 result in the cost matrices shown in
Tables III and IV for Cu and Cl, respectively. In the tables,
the first column represents the source PID and the remaining
columns the destination PID. Thus, a host in the PID Comcast
will always prefer other hosts in Comcast first (cost: 0),
followed by hosts in PID Mediacom (cost: 0.316) if it wants to
optimize upload bandwidth, or hosts in the PID Time Warner
(cost: 0.32) if it wants to minimize latency. The costs serve
to connect the previously disconnected components of Figure
5; Figure 7 depicts the links formed by peers in the largest
PID (Comcast) to peers in other PIDs based on the upload
bandwidth cost of Table III. The width of the edges between
the PIDs is a measure of preference; i.e., the PIDs connected
by wider edges are preferred.

An example helps explain the use of costs further. Assume
that a peer located in the PID represented by Comcast wants
to engage in downloading content using a P2P network; it
therefore seeks PIDs with high upload capacities. The cost
map for Cu (Table III) informs the querying peer to seek
out peers in the local PID (i.e., Comcast) first (cost: 0.000),
followed by looking for peers in the PID corresponding to
Mediacom (0.316), and then connect to peers in the PID
corresponding to Embarq (0.377), and so on. If there are not
enough peers in the set of PIDs whose costs are known, the
querying peer will seek out peers in the Default PID (where
the cost is the highest). Similarly, when looking for peers with
minimal latency (Table IV) , the same querying peer would try
peers in the PID Comcast first (cost: 0.0) followed by peers
in the PID Time Warner (cost: 0.32), MCI (0.86) and so on
before finally moving to look for peers in the Default PID.
(Note that the Default PID is not shown in Figure 7.)

Figure 7: Connecting the Comcast PID based on Cu

We note that the calculated costs accurately reflect how
the particular PID behaves according to historical data. For
instance, consider the PIDs Mediacom and Embarq in Table
III and their associated curves in Figure 6a. In the figure, the
curve for Embarq is above the risk-free threshold for all of the
year when compared to the curve for Mediacom. However, the
cost for Mediacom in Table III is less than the cost for Embarq,
making the former more attractive when forming connections.
The cost for Mediacom reflects the constant upward slope
of its curve when compared to the vagaries reflected by the
Embarq curve. Such objective historical guidance reflected in

Figure 4: Distribution of stable measurement points (unit_ids)

Figure 5: Top 9 ISPs as disconnected components in a network

latency. The former is gathered from the curr_netusage table
while the latter is collected from the curr_videostream table.

The FCC dataset contain the upload and latency measures
for each unit_id over a 12 months period, measured on a
hourly basis. We compute a monthly average of these rates
for each ISP and define the cost matrix in terms of Sharpe
ratio [11], a common metric used in financial engineering.
This ratio measures to which extent a given asset is a adequate
trade off between the risk undertaken by an investor compared
to the expected return. The Sharpe ratio is a straightforward
and natural extension for calculating a cost matrix for our
topology: We model the investor as a node in the network and

a portfolio is modeled as the specific service of interest —
seeking PIDs where nodes have a high upload throughput or
PIDs where nodes have low latency.

The Sharpe ratio for a portfolio p, is computed by sub-
tracting the risk-free rate of return (Rf ) from the rate of
the portfolio return itself (r̄p), and dividing by the standard
deviation of the portfolio returns (�p), as shown in (1):

Sp =
r̄p �Rf

�p
(1)

Historical averages alone might not be appropriate if the
associated standard deviations are high, because in such cases
the effective metric of interest is much lower than the histor-
ical average. However, the Sharpe ratio takes the associated
standard deviation in account, so it is a better candidate
for approximating a cost function. Higher Sharpe ratios are
equivalent to high averages and small standard deviations.
Smaller values for the Sharpe ratios are due to either high
standard deviations, or to small averages. A negative Sharpe
ratio implies that the risk-free rate of return would perform
better than the portfolio being analyzed.

We create two cost maps, each cost map is specific to
a class of applications. Cost map, Cu is created for P2P-
class of applications that seeks out PIDs that host peers with
high upload bandwidth. The second cost map, Cl is used by
latency-sensitive applications — such as CDNs — that desire
to minimize latency during data transfer. The cost maps Cu

and Cl are computed by analyzing the Sharpe ratio using the
Equation (1) where r̄p represents the actual average upload
throughput (or average latency) for the given month and �p

the standard deviation of the download throughput (or latency).
Rf , the risk-free rate of return is modeled as one standard
deviation below the yearly average upload bandwidth (or
latency).

(a) Upload Throughput (b) Latency

Figure 6: Sharpe ratios for upload throughput and latency

Figure 6 shows the Sharpe ratios for the upload bandwidth
(Figure 6a) and latency (Figure 6b). The figure shows the the
monthly evolution (x-axis) of the Sharpe ratio (y-axis) for our
9 ISPs. The horizontal line in the graphs (at y = 0) represents
the threshold at which the risk-free investment no longer is the
best option. These ratios can be compared in terms of absolute
values, but also on the temporal evolution for individual ISPs.
There are some interesting trends to explore here, which we
discuss below before showing how to create the cost maps.

First, the data does not show any correlation between the
upload throughput and the latency among the ISPs. However,
Figure 6b does show that most ISPs deliver acceptable latency
according to the risk-free investment benchmark we establish.
This is less the case with upload throughput (Figure 6a), where
there is a wider variation among ISPs that deliver what we
consider an acceptable upload speed. Second, a number of
ISPs show continuous improvement over the year in upload
throughput (Comcast, Cox, MCI, and Mediacom). This may be
a result of cumulative engineering and provisioning, although
we did not research the exact cause for this. Alternatively,
some ISPs shows a downward trend in the Sharpe ratio for
the upload throughput as epitomized by Time Warner and
Windstream. Time Warner’s downward trend that starts around
February and does not show a sustained uptick until July
can be explained by its acquisition of Insight Communica-
tions, which was completed on February 29, 2012 3 Insight
Communications is the ninth-largest cable operator in the US
serving the states of Kentucky, Indiana and Ohio. As the

3http://www.kentucky.com/2012/02/29/2089006/time-warner-cable-takes-
over-insight.html, site visited April 25, 2014.

merger completed, it took about 5 months for the operating
capacities of the merged network to start showing a positive
growth again.

Calculating the cost maps using the Sharpe ratio (Equation
1) is straightforward. We consider PID to be a set of all
the ISPs in Table II. The upload throughput cost map, Cu,
is calculated from the Sharpe ratio using Equations 2 and 3
below.

8i 2 PID,C

i
u =

12X

m=1

S

i
m ⇤Wi (2)

Here, C

i
u is the upload throughput cost for each PID i,

which is calculated over summation of the value of each
month’s Sharpe ratio for the PID i (Si

m) and multiplying by
a weight associated with the PID. To reward Sharpe ratios
that are positive, we weigh the sum by the fraction of months
(from the last 12 months) that the Sharpe ratio for PID i is
positive (i.e., it is above the risk-free investment line).

In ALTO, a lower value for a cost indicates a higher
preference for traffic to be sent from a source to a destination.
Therefore, the actual cost for each PID is further calculated
as:

8i 2 PID,Default_cost = dmax(C1
u, C

2
u, ..., C

i
u)e

8i 2 PID,C

i
u = Default_cost� C

i
u

(3)

That is, we first find the maximum cost across all PIDs; this
becomes our default cost that is applied to the Default PID
(c.f. Section I). Costs to the remaining PIDs are calculated
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This is less the case with upload throughput (Figure 6a), where
there is a wider variation among ISPs that deliver what we
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ISPs show continuous improvement over the year in upload
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a result of cumulative engineering and provisioning, although
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merger completed, it took about 5 months for the operating
capacities of the merged network to start showing a positive
growth again.

Calculating the cost maps using the Sharpe ratio (Equation
1) is straightforward. We consider PID to be a set of all
the ISPs in Table II. The upload throughput cost map, Cu,
is calculated from the Sharpe ratio using Equations 2 and 3
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that are positive, we weigh the sum by the fraction of months
(from the last 12 months) that the Sharpe ratio for PID i is
positive (i.e., it is above the risk-free investment line).

In ALTO, a lower value for a cost indicates a higher
preference for traffic to be sent from a source to a destination.
Therefore, the actual cost for each PID is further calculated
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  Big	
  Data	
  and	
  Security	
  
•  Research Questions:	



–  Securing Big Data architectures	


•  Which data is accessed and processed ?	


•  What happens to the outcome ?	


•  How to protect data in motion ?	



–  Big Data approaches for advanced security analytics and advanced Persistent Threat (APT) 
detection 	



•  massive data collecting data and event tracking at large scale	


•  deeper analytics on unstructured data (honeypots, firewall, DNS);	


•  consolidated view of security-related information;	


•  real-time analysis of streaming AAA  security data in order to profile the human behavior in the loop	


•  Predict attacker behavior  on other targets	
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Botnet	
  tracking	
  
Jerome	
  Francois,	
  Radu	
  State,	
  Thomas	
  Engel	
  

	
  

2012-­‐05-­‐08	
   Network Security 18	
  

Botnets:	
  
–  Army	
  of	
  controlled	
  

compromised	
  machines	
  
–  Powerful	
  afack	
  vector	
  

(spam,	
  DDoS,	
  
espionage...)	
  	
  

	
  

P2P	
  Bots	
  detec=on:	
  
–  Well	
  interconnected	
  machines	
  to	
  

maintain	
  the	
  underlying	
  network	
  	
  
–  →	
  Graph	
  Analysis	
  (PageRank/Google)	
  
–  Improvement	
  by	
  leveraging	
  honeypots	
  

	
  
Source:	
  hfp://www.csoonline.com/ar1cle/348317/what-­‐a-­‐botnet-­‐looks-­‐like,	
  Scof	
  Berinato	
  



BotTrack	
  /	
  BotCloud	
  (MapReduce	
  version):	
  

	
  

Botnet	
  tracking	
  

2012-­‐05-­‐08	
   Network	
  Security	
   19	
  

Results:	
  
–  Stealthy	
  botnet	
  

detec1on	
  (1%	
  of	
  
IP	
  addresses)	
  

–  High	
  accuracy	
  ~	
  
99%	
  

–  Scalability	
  
(60,000	
  flows	
  /
second)	
  

Publica=ons:	
  
–  BotTrack:	
  Tracking	
  Botnets	
  Using	
  NetFlow	
  and	
  PageRank,	
  François	
  J.,	
  Wang	
  S.,	
  State	
  R.,	
  

Thomas	
  E.,	
  IFIP	
  Networking	
  2011	
  
–  BotCloud:	
  Detec<ng	
  Botnets	
  Using	
  MapReduce,	
  François	
  J.,	
  Wang	
  S.,	
  Bronzi	
  W.,	
  State	
  R.,	
  

Engel	
  T.,	
  IEEE	
  Interna1onal	
  Workshop	
  on	
  Informa1on	
  Forensics	
  and	
  Security	
  -­‐	
  WIFS'11	
  



Financial	
  Data	
  Analysis	
  	
  
•  Research	
  Ques1ons:	
  

–  Model	
  the	
  complex	
  rela1onships	
  for	
  co-­‐lending	
  in	
  EU	
  
banking	
  zone	
  

–  Modeling	
  of	
  financial	
  instruments	
  
–  Mining	
  of	
  highly	
  unstructured	
  data	
  formats	
  
–  Integrate	
  	
  economical	
  (NYSE),	
  regulatory	
  (SEC)	
  	
  and	
  media	
  

news	
  (chairman,	
  board	
  member	
  informa1on	
  obtained	
  from	
  
social	
  media	
  Twifer,	
  Google	
  Trend)	
  

–  Assess	
  and	
  model	
  risk	
  based	
  on	
  graph	
  modeling	
  and	
  
Distributed	
  computa1ons	
  	
  	
  

–  Analyze	
  loan	
  interests	
  rates	
  (Libor)	
  with	
  respect	
  to	
  
addi1onal	
  loan	
  rates	
  and	
  economic	
  indicators.	
  	
  	
  	
  

•  Expected	
  Outcomes	
  
–  Link	
  to	
  local	
  (Luxembourg)	
  economy	
  	
  
–  Impact	
  to	
  EU	
  regulatory	
  bodies	
  
–  Development	
  of	
  such	
  ac1vi1es	
  at	
  the	
  SnT	
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Figure 1: Co-lending network for 2005.

that are connected to the ones it is directly connected with.
Therefore, even if a bank has very few co-lending relation-
ships itself, it may impact the entire system if it is con-
nected to a few major lenders. Since the matrix L repre-
sents the pairwise connectedness of all banks, we may write
the impact of bank i on the system as the following equa-
tion: xi =

∑N
j=1

Lijxj , ∀i. This may be compactly repre-

sented as x = L · x, where x = [x1, x2, . . . , xN ]′ ∈ RN×1

and L ∈ RN×N . We pre-multiply the left-hand-side of the
equation above by a scalar λ to get λ x = L · x, i.e., an
eigensystem. The principal eigenvector in this system gives
the loadings of each bank on the main eigenvalue and rep-
resents the influence of each bank on the lending network.
This is known as the “centrality” vector in the sociology lit-
erature [5] and delivers a measure of the systemic effect a
single bank may have on the lending system. Federal regula-
tors may use the centrality scores of all banks to rank banks
in terms of their risk contribution to the entire system and
determine the best allocation of supervisory attention.

The data we use comprises a sample of loans filings made
by financial institutions with the SEC. Our data covers a
period of five years, from 2005–2009. We look at loans
between financial institutions only. Examples of included
loans are 364-day bridge loans, longer term credit arrange-
ments, Libor notes, etc. The number of loans each year
is not as large as evidenced in the overnight market, and
these loans are largely “co-loans”, i.e., loans where several
lenders jointly lend to a borrower. By examining the net-
work of co-lenders, we may determine which ones are more
critical, and we may then examine how the failure of a criti-
cal lender might damage the entire co-lending system. This
offers a measure of systemic risk that is based directly on an
interconnected lending mechanism, unlike indirect measures
of systemic risk based on correlations of stock returns ([1];
[2]; [4]; [16]). A future extension of this analysis will look at
loan amounts, whereas the current analysis is based on loan
counts for which robust data is available.

After constructing the adjacency matrix representing co-
lending activity, we removed all edges with weights less than
2, to eliminate banks that are minimally active in taking on
lending risk with other banks. (This threshold level may
be varied as required by a regulator.) We then removed all
nodes that have no edges.

An example of the resulting co-lending network is pre-
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Figure 2: Co-lending networks for 2006–2009.

sented in Figure 1 for 2005. We see that there are three large
components of co-lenders, and three hub banks, with con-
nections to the large components. There are also satellite co-
lenders. In order to determine which banks in the network
are most likely to contribute to systemic failure, we com-
pute the normalized eigenvalue centrality score described
previously, and report this for the top 25 banks. These are
presented in Table 1. The three nodes with the highest cen-
trality are seen to be critical hubs in the network—these are
J.P. Morgan (node 143), Bank of America (node 29), and
Citigroup (node 47). They are bridges between all banks,
and contribute highly to systemic risk.

Figure 2 shows how the network evolves in the four years
after 2005. Comparing 2006 with 2005 (Figure 1), we see
that there still are disjointed large components connected
by a few central nodes. From 2007 onwards, as the finan-
cial crisis begins to take hold, co-lending activity diminished
markedly. Also, all high centrality banks tend to cluster into
a single large giant component in the latter years.

We also compute a metric of fragility for the network as
a whole, i.e., how quickly will the failure of any bank trig-
ger failures across the network by expanding ripples across
neighborhoods? One such metric of systemic risk is the
expected degree of neighboring nodes averaged across all
nodes—derived in [15], page 190, this is equal to E(d2)/E(d) ≡
R, where d stands for the degree of a node. Neighborhoods
are expected to expand when R ≥ 2. We compute this
for each year in our sample (Table 1). The ratio is highest
just before the crisis—and then dissipates as banks take on
less risk through the crisis. The diameter of the co-lending
graph becomes marginally smaller as the network shrinks
over time. This framework may be extended to other met-
rics of systemic risk to develop a systemic risk management
system for regulators.

2.2 Drill-Down into Individual Entities
In this section we describe additional views that Midas

provides centered around individual entities. For example,
once a company such as Citigroup Inc. has been identified
as a critical hub for the financial system, a regulator may
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