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•  What	  is	  Big	  Data	  
•  Big	  Data	  Analysis	  in	  the	  team	  

–  Call	  Details	  record	  at	  a	  country	  level	  
–  Analysis	  of	  Network	  traffic	  –	  research	  done	  at	  SnT	  

Outline	  
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Big	  Data	  at	  a	  glance	  
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What	  are	  	  Big	  Data	  Architectures	  ?	  
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Phases	  in	  Big	  Data	  Processing	  
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Map-‐Reduce	  –	  the	  holy	  grail	  in	  Big	  Data	  
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Big	  Data	  is	  more	  then	  simple	  HPC	  
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The	  current	  Eco-‐System	  
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•  One	  country	  :	  Ivory	  Cost	  
•  Time	  Period:	  01.12.2011	  to	  28.04.2012	  
•  5	  million	  users	  
•  1124	  base	  sta1ons	  (for	  mobile	  communica1ons)	  
•  More	  then	  3	  billions	  entries	  summarizing	  on	  a	  hourly	  basis	  the	  

SMS	  and	  Voice	  Calls	  	  
•  50000	  mobile	  users	  tracked	  over	  these	  months	  with	  GPS	  and	  

call	  records	  
	  	  	  

Anomaly	  Detec1on	  in	  large	  scale	  CDR	  records	  
	  
David	  Goergen,	  Radu	  State,	  Thomas	  Engel	  and	  Veena	  MENDIRATTA	  (Bell	  Labs,	  USA)	  	  
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What	  happened	  in	  the	  Ivory	  Cost	  in	  2012	  ?	  
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The	  silent	  base	  sta1ons……	  
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Strange	  calling	  behaviors…..at	  2	  AM.	  

6/11/14	   NETLAB	  Presenta1on	   13	  



Where	  is	  most	  variability	  in	  the	  data	  ?	  
PCA	  analysis	  on	  the	  dura1on	  	  
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Cloud	  and	  Service	  Management	  

6/11/14 IIT RTC conference 

15 

•  ALTO solves the general rendezvous problem: Given a choice of resources, which one is the 
best candidate? 

–  Normalized costs: Type: What does the cost represent?  ( Air-miles, hop count, ...) 

-  Numerical (virtual coordinates) 

-  Ordinal(position-based preferences) 

 

Graphics sources: 
http://pubs.vmware.com/vi301/intro/images/Introduction_chapter.3.2.1.jpg 

Datacenter 1 

Datacenter 2 

Datacenter 3 

2 main abstractions: 

-  Network Map 

-  Cost Map 

Network specified in terms of 
Partition/Provider ID (PID): 
aggregation of endpoints 
identified by a provider-
defined network location 
identifier. 

ALTO 
service 
discovery 

ALTO 
client 

Dynamic 
network 
information Provisioning 

policies 

Routing 
protocols 



Op1miza1on	  of	  service	  provisioning	  (Cloud,	  
CDNs)	  over	  large	  ISPs	  and	  networks	  

	  

•  FCC	  Dataset	  specifica1on	  (200	  
GB/year)	  

–  FCC	  has	  embarked	  on	  a	  na1onwide	  
performance	  study	  of	  residen1al	  wireline	  
broadband	  service	  

–  Aim	  is	  to	  use	  the	  raw	  datasets	  from	  this	  
study	  for	  analysis	  and	  to	  create	  ALTO	  
topology	  map	  and	  a	  cost	  map	  from	  this	  
dataset	  

–  Using	  a	  canonical	  Map-‐Reduce	  (Big	  Data)	  
computa1onal	  paradigm	  on	  a	  Hadoop	  
cluster	  	  

•  Major	  outcomes	  
–  Financial	  modeling	  with	  Sharpe	  ra1os	  to	  

build	  third	  par1es	  ALTO	  maps	  that	  takes	  
both	  bandwidth	  and	  latency	  into	  account	  

6/11/14	  

Relevant	  Publica1ons	  and	  submissions	  
�  David	  Goergen,	  Veena	  B.	  Mendirafa	  (Bell	  Labs,	  USA),	  Radu	  State	  Thomas	  Engel.	  Iden1fying	  abnormal	  pafern	  in	  cellular	  

communica1on	  flows	  (IPTCOMM	  2013)	  
�  David Goergen, Vijay K. Gurbani (Bell	  Labs,	  USA),	  Radu State: Of	  maps	  and	  costs:	  Aggrega1ng	  large-‐scale	  broadband	  

measurements	  for	  the	  Applica1on	  Layer	  Traffic	  	  Op1miza1on	  (ALTO)	  protocol.	  (RTC	  2013)	  	  
�  David	  Goergen,	  Vijay	  Gurbani	  (Bell	  Labs,	  USA),	  Radu	  State	  Thomas	  Engel.	  Making	  historical	  connec1ons:	  Building	  Applica1on	  

Layer	  Traffic	  Op1miza1on	  (ALTO)	  network	  and	  cost	  maps	  from	  public	  broadband	  data	  	  (submifed	  to	  CNSM	  2014)	  

Cablevision Charter Comcast Cox Embarq MCI Mediacom TimeWarner Windstream Default
Cablevision 0.000 0.799 0.804 0.796 0.377 0.700 0.316 0.508 0.782 1.000
Charter 0.498 0.000 0.804 0.796 0.377 0.700 0.316 0.508 0.782 1.000
Comcast 0.498 0.799 0.000 0.796 0.377 0.700 0.316 0.508 0.782 1.000
Cox 0.498 0.799 0.804 0.000 0.377 0.700 0.316 0.508 0.782 1.000
Embarq 0.498 0.799 0.804 0.796 0.000 0.700 0.316 0.508 0.782 1.000
MCI 0.498 0.799 0.804 0.796 0.377 0.000 0.316 0.508 0.782 1.000
Mediacom 0.498 0.799 0.804 0.796 0.377 0.700 0.000 0.508 0.782 1.000
TimeWarner 0.498 0.799 0.804 0.796 0.377 0.700 0.316 0.000 0.782 1.000
Windstream 0.498 0.799 0.804 0.796 0.377 0.700 0.316 0.508 0.000 1.000

Table III: Cost map for upload bandwidth (Cu)

Cablevision Charter Comcast Cox Embarq MCI Mediacom TimeWarner Windstream Default
Cablevision 0.00 1.67 1.81 1.10 1.41 0.86 1.32 0.32 1.38 2.00
Charter 0.76 0.00 1.81 1.10 1.41 0.86 1.32 0.32 1.38 2.00
Comcast 0.76 1.67 0.00 1.10 1.41 0.86 1.32 0.32 1.38 2.00
Cox 0.76 1.67 1.81 0.00 1.41 0.86 1.32 0.32 1.38 2.00
Embarq 0.76 1.67 1.81 1.10 0.00 0.86 1.32 0.32 1.38 2.00
MCI 0.76 1.67 1.81 1.10 1.41 0.00 1.32 0.32 1.38 2.00
Mediacom 0.76 1.67 1.81 1.10 1.41 0.86 0.00 0.32 1.38 2.00
TimeWarner 0.76 1.67 1.81 1.10 1.41 0.86 1.32 0.00 1.38 2.00
Windstream 0.76 1.67 1.81 1.10 1.41 0.86 1.32 0.32 0.00 2.00

Table IV: Cost map for latency (Cl)

as a distance from the default cost. The latency cost for each
PID, Ci

l , is calculated in a similar manner. The computations
of Equations 2 and 3 result in the cost matrices shown in
Tables III and IV for Cu and Cl, respectively. In the tables,
the first column represents the source PID and the remaining
columns the destination PID. Thus, a host in the PID Comcast
will always prefer other hosts in Comcast first (cost: 0),
followed by hosts in PID Mediacom (cost: 0.316) if it wants to
optimize upload bandwidth, or hosts in the PID Time Warner
(cost: 0.32) if it wants to minimize latency. The costs serve
to connect the previously disconnected components of Figure
5; Figure 7 depicts the links formed by peers in the largest
PID (Comcast) to peers in other PIDs based on the upload
bandwidth cost of Table III. The width of the edges between
the PIDs is a measure of preference; i.e., the PIDs connected
by wider edges are preferred.

An example helps explain the use of costs further. Assume
that a peer located in the PID represented by Comcast wants
to engage in downloading content using a P2P network; it
therefore seeks PIDs with high upload capacities. The cost
map for Cu (Table III) informs the querying peer to seek
out peers in the local PID (i.e., Comcast) first (cost: 0.000),
followed by looking for peers in the PID corresponding to
Mediacom (0.316), and then connect to peers in the PID
corresponding to Embarq (0.377), and so on. If there are not
enough peers in the set of PIDs whose costs are known, the
querying peer will seek out peers in the Default PID (where
the cost is the highest). Similarly, when looking for peers with
minimal latency (Table IV) , the same querying peer would try
peers in the PID Comcast first (cost: 0.0) followed by peers
in the PID Time Warner (cost: 0.32), MCI (0.86) and so on
before finally moving to look for peers in the Default PID.
(Note that the Default PID is not shown in Figure 7.)

Figure 7: Connecting the Comcast PID based on Cu

We note that the calculated costs accurately reflect how
the particular PID behaves according to historical data. For
instance, consider the PIDs Mediacom and Embarq in Table
III and their associated curves in Figure 6a. In the figure, the
curve for Embarq is above the risk-free threshold for all of the
year when compared to the curve for Mediacom. However, the
cost for Mediacom in Table III is less than the cost for Embarq,
making the former more attractive when forming connections.
The cost for Mediacom reflects the constant upward slope
of its curve when compared to the vagaries reflected by the
Embarq curve. Such objective historical guidance reflected in

Figure 4: Distribution of stable measurement points (unit_ids)

Figure 5: Top 9 ISPs as disconnected components in a network

latency. The former is gathered from the curr_netusage table
while the latter is collected from the curr_videostream table.

The FCC dataset contain the upload and latency measures
for each unit_id over a 12 months period, measured on a
hourly basis. We compute a monthly average of these rates
for each ISP and define the cost matrix in terms of Sharpe
ratio [11], a common metric used in financial engineering.
This ratio measures to which extent a given asset is a adequate
trade off between the risk undertaken by an investor compared
to the expected return. The Sharpe ratio is a straightforward
and natural extension for calculating a cost matrix for our
topology: We model the investor as a node in the network and

a portfolio is modeled as the specific service of interest —
seeking PIDs where nodes have a high upload throughput or
PIDs where nodes have low latency.

The Sharpe ratio for a portfolio p, is computed by sub-
tracting the risk-free rate of return (Rf ) from the rate of
the portfolio return itself (r̄p), and dividing by the standard
deviation of the portfolio returns (�p), as shown in (1):

Sp =
r̄p �Rf

�p
(1)

Historical averages alone might not be appropriate if the
associated standard deviations are high, because in such cases
the effective metric of interest is much lower than the histor-
ical average. However, the Sharpe ratio takes the associated
standard deviation in account, so it is a better candidate
for approximating a cost function. Higher Sharpe ratios are
equivalent to high averages and small standard deviations.
Smaller values for the Sharpe ratios are due to either high
standard deviations, or to small averages. A negative Sharpe
ratio implies that the risk-free rate of return would perform
better than the portfolio being analyzed.

We create two cost maps, each cost map is specific to
a class of applications. Cost map, Cu is created for P2P-
class of applications that seeks out PIDs that host peers with
high upload bandwidth. The second cost map, Cl is used by
latency-sensitive applications — such as CDNs — that desire
to minimize latency during data transfer. The cost maps Cu

and Cl are computed by analyzing the Sharpe ratio using the
Equation (1) where r̄p represents the actual average upload
throughput (or average latency) for the given month and �p

the standard deviation of the download throughput (or latency).
Rf , the risk-free rate of return is modeled as one standard
deviation below the yearly average upload bandwidth (or
latency).

(a) Upload Throughput (b) Latency

Figure 6: Sharpe ratios for upload throughput and latency

Figure 6 shows the Sharpe ratios for the upload bandwidth
(Figure 6a) and latency (Figure 6b). The figure shows the the
monthly evolution (x-axis) of the Sharpe ratio (y-axis) for our
9 ISPs. The horizontal line in the graphs (at y = 0) represents
the threshold at which the risk-free investment no longer is the
best option. These ratios can be compared in terms of absolute
values, but also on the temporal evolution for individual ISPs.
There are some interesting trends to explore here, which we
discuss below before showing how to create the cost maps.

First, the data does not show any correlation between the
upload throughput and the latency among the ISPs. However,
Figure 6b does show that most ISPs deliver acceptable latency
according to the risk-free investment benchmark we establish.
This is less the case with upload throughput (Figure 6a), where
there is a wider variation among ISPs that deliver what we
consider an acceptable upload speed. Second, a number of
ISPs show continuous improvement over the year in upload
throughput (Comcast, Cox, MCI, and Mediacom). This may be
a result of cumulative engineering and provisioning, although
we did not research the exact cause for this. Alternatively,
some ISPs shows a downward trend in the Sharpe ratio for
the upload throughput as epitomized by Time Warner and
Windstream. Time Warner’s downward trend that starts around
February and does not show a sustained uptick until July
can be explained by its acquisition of Insight Communica-
tions, which was completed on February 29, 2012 3 Insight
Communications is the ninth-largest cable operator in the US
serving the states of Kentucky, Indiana and Ohio. As the

3http://www.kentucky.com/2012/02/29/2089006/time-warner-cable-takes-
over-insight.html, site visited April 25, 2014.

merger completed, it took about 5 months for the operating
capacities of the merged network to start showing a positive
growth again.

Calculating the cost maps using the Sharpe ratio (Equation
1) is straightforward. We consider PID to be a set of all
the ISPs in Table II. The upload throughput cost map, Cu,
is calculated from the Sharpe ratio using Equations 2 and 3
below.

8i 2 PID,C

i
u =

12X

m=1

S

i
m ⇤Wi (2)

Here, C

i
u is the upload throughput cost for each PID i,

which is calculated over summation of the value of each
month’s Sharpe ratio for the PID i (Si

m) and multiplying by
a weight associated with the PID. To reward Sharpe ratios
that are positive, we weigh the sum by the fraction of months
(from the last 12 months) that the Sharpe ratio for PID i is
positive (i.e., it is above the risk-free investment line).

In ALTO, a lower value for a cost indicates a higher
preference for traffic to be sent from a source to a destination.
Therefore, the actual cost for each PID is further calculated
as:

8i 2 PID,Default_cost = dmax(C1
u, C

2
u, ..., C

i
u)e

8i 2 PID,C

i
u = Default_cost� C

i
u

(3)

That is, we first find the maximum cost across all PIDs; this
becomes our default cost that is applied to the Default PID
(c.f. Section I). Costs to the remaining PIDs are calculated
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This is less the case with upload throughput (Figure 6a), where
there is a wider variation among ISPs that deliver what we
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ISPs show continuous improvement over the year in upload
throughput (Comcast, Cox, MCI, and Mediacom). This may be
a result of cumulative engineering and provisioning, although
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merger completed, it took about 5 months for the operating
capacities of the merged network to start showing a positive
growth again.

Calculating the cost maps using the Sharpe ratio (Equation
1) is straightforward. We consider PID to be a set of all
the ISPs in Table II. The upload throughput cost map, Cu,
is calculated from the Sharpe ratio using Equations 2 and 3
below.
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a weight associated with the PID. To reward Sharpe ratios
that are positive, we weigh the sum by the fraction of months
(from the last 12 months) that the Sharpe ratio for PID i is
positive (i.e., it is above the risk-free investment line).

In ALTO, a lower value for a cost indicates a higher
preference for traffic to be sent from a source to a destination.
Therefore, the actual cost for each PID is further calculated
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(c.f. Section I). Costs to the remaining PIDs are calculated



	  Big	  Data	  and	  Security	  
•  Research Questions:	


–  Securing Big Data architectures	

•  Which data is accessed and processed ?	

•  What happens to the outcome ?	

•  How to protect data in motion ?	


–  Big Data approaches for advanced security analytics and advanced Persistent Threat (APT) 
detection 	


•  massive data collecting data and event tracking at large scale	

•  deeper analytics on unstructured data (honeypots, firewall, DNS);	

•  consolidated view of security-related information;	

•  real-time analysis of streaming AAA  security data in order to profile the human behavior in the loop	

•  Predict attacker behavior  on other targets	


	

•  J. François, S. Wang, R. State, and T. Engel, “BotTrack: Tracking Botnets using NetFlow and PageRank,” in IFIP/TC6 NETWORKING 2011, 

Springer, Ed., Valencia, Spain, May 2011	

•  Wagner Cynthia, J. François, R. State, and T. Engel, “Machine Learning Approach for IP-Flow Record Anomaly Detection,” in IFIP/TC6 

NETWORKING 2011, Springer, Ed., Valencia, Spain, May 2011. 	

•  Hommes, Stefan State, Radu Zinnen, Andreas  Engel, Thomas. Detection of Abnormal Behaviour in a Surveillance Environment Using 

Control Charts. IEEE International Conference on Advanced Video and Signal based Surveillance (AVSS) (2011), no. 8th, pp. 113-118	

•  S. Wang, R. State, M. Ourdane T. Engel. Mining NetFlow Records for Critical Network Activities. AIMS 2010: 135-146	

•  S. Wang, R. State, M. Ourdane T. Engel. FlowRank: ranking NetFlow records. IWCMC 2010: 484-488	
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Botnet	  tracking	  
Jerome	  Francois,	  Radu	  State,	  Thomas	  Engel	  

	  

2012-‐05-‐08	   Network Security 18	  

Botnets:	  
–  Army	  of	  controlled	  

compromised	  machines	  
–  Powerful	  afack	  vector	  

(spam,	  DDoS,	  
espionage...)	  	  

	  

P2P	  Bots	  detec=on:	  
–  Well	  interconnected	  machines	  to	  

maintain	  the	  underlying	  network	  	  
–  →	  Graph	  Analysis	  (PageRank/Google)	  
–  Improvement	  by	  leveraging	  honeypots	  

	  
Source:	  hfp://www.csoonline.com/ar1cle/348317/what-‐a-‐botnet-‐looks-‐like,	  Scof	  Berinato	  



BotTrack	  /	  BotCloud	  (MapReduce	  version):	  

	  

Botnet	  tracking	  

2012-‐05-‐08	   Network	  Security	   19	  

Results:	  
–  Stealthy	  botnet	  

detec1on	  (1%	  of	  
IP	  addresses)	  

–  High	  accuracy	  ~	  
99%	  

–  Scalability	  
(60,000	  flows	  /
second)	  

Publica=ons:	  
–  BotTrack:	  Tracking	  Botnets	  Using	  NetFlow	  and	  PageRank,	  François	  J.,	  Wang	  S.,	  State	  R.,	  

Thomas	  E.,	  IFIP	  Networking	  2011	  
–  BotCloud:	  Detec<ng	  Botnets	  Using	  MapReduce,	  François	  J.,	  Wang	  S.,	  Bronzi	  W.,	  State	  R.,	  

Engel	  T.,	  IEEE	  Interna1onal	  Workshop	  on	  Informa1on	  Forensics	  and	  Security	  -‐	  WIFS'11	  



Financial	  Data	  Analysis	  	  
•  Research	  Ques1ons:	  

–  Model	  the	  complex	  rela1onships	  for	  co-‐lending	  in	  EU	  
banking	  zone	  

–  Modeling	  of	  financial	  instruments	  
–  Mining	  of	  highly	  unstructured	  data	  formats	  
–  Integrate	  	  economical	  (NYSE),	  regulatory	  (SEC)	  	  and	  media	  

news	  (chairman,	  board	  member	  informa1on	  obtained	  from	  
social	  media	  Twifer,	  Google	  Trend)	  

–  Assess	  and	  model	  risk	  based	  on	  graph	  modeling	  and	  
Distributed	  computa1ons	  	  	  

–  Analyze	  loan	  interests	  rates	  (Libor)	  with	  respect	  to	  
addi1onal	  loan	  rates	  and	  economic	  indicators.	  	  	  	  

•  Expected	  Outcomes	  
–  Link	  to	  local	  (Luxembourg)	  economy	  	  
–  Impact	  to	  EU	  regulatory	  bodies	  
–  Development	  of	  such	  ac1vi1es	  at	  the	  SnT	  

6/11/14	  

Figure 1: Co-lending network for 2005.

that are connected to the ones it is directly connected with.
Therefore, even if a bank has very few co-lending relation-
ships itself, it may impact the entire system if it is con-
nected to a few major lenders. Since the matrix L repre-
sents the pairwise connectedness of all banks, we may write
the impact of bank i on the system as the following equa-
tion: xi =

∑N
j=1

Lijxj , ∀i. This may be compactly repre-

sented as x = L · x, where x = [x1, x2, . . . , xN ]′ ∈ RN×1

and L ∈ RN×N . We pre-multiply the left-hand-side of the
equation above by a scalar λ to get λ x = L · x, i.e., an
eigensystem. The principal eigenvector in this system gives
the loadings of each bank on the main eigenvalue and rep-
resents the influence of each bank on the lending network.
This is known as the “centrality” vector in the sociology lit-
erature [5] and delivers a measure of the systemic effect a
single bank may have on the lending system. Federal regula-
tors may use the centrality scores of all banks to rank banks
in terms of their risk contribution to the entire system and
determine the best allocation of supervisory attention.

The data we use comprises a sample of loans filings made
by financial institutions with the SEC. Our data covers a
period of five years, from 2005–2009. We look at loans
between financial institutions only. Examples of included
loans are 364-day bridge loans, longer term credit arrange-
ments, Libor notes, etc. The number of loans each year
is not as large as evidenced in the overnight market, and
these loans are largely “co-loans”, i.e., loans where several
lenders jointly lend to a borrower. By examining the net-
work of co-lenders, we may determine which ones are more
critical, and we may then examine how the failure of a criti-
cal lender might damage the entire co-lending system. This
offers a measure of systemic risk that is based directly on an
interconnected lending mechanism, unlike indirect measures
of systemic risk based on correlations of stock returns ([1];
[2]; [4]; [16]). A future extension of this analysis will look at
loan amounts, whereas the current analysis is based on loan
counts for which robust data is available.

After constructing the adjacency matrix representing co-
lending activity, we removed all edges with weights less than
2, to eliminate banks that are minimally active in taking on
lending risk with other banks. (This threshold level may
be varied as required by a regulator.) We then removed all
nodes that have no edges.

An example of the resulting co-lending network is pre-
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Figure 2: Co-lending networks for 2006–2009.

sented in Figure 1 for 2005. We see that there are three large
components of co-lenders, and three hub banks, with con-
nections to the large components. There are also satellite co-
lenders. In order to determine which banks in the network
are most likely to contribute to systemic failure, we com-
pute the normalized eigenvalue centrality score described
previously, and report this for the top 25 banks. These are
presented in Table 1. The three nodes with the highest cen-
trality are seen to be critical hubs in the network—these are
J.P. Morgan (node 143), Bank of America (node 29), and
Citigroup (node 47). They are bridges between all banks,
and contribute highly to systemic risk.

Figure 2 shows how the network evolves in the four years
after 2005. Comparing 2006 with 2005 (Figure 1), we see
that there still are disjointed large components connected
by a few central nodes. From 2007 onwards, as the finan-
cial crisis begins to take hold, co-lending activity diminished
markedly. Also, all high centrality banks tend to cluster into
a single large giant component in the latter years.

We also compute a metric of fragility for the network as
a whole, i.e., how quickly will the failure of any bank trig-
ger failures across the network by expanding ripples across
neighborhoods? One such metric of systemic risk is the
expected degree of neighboring nodes averaged across all
nodes—derived in [15], page 190, this is equal to E(d2)/E(d) ≡
R, where d stands for the degree of a node. Neighborhoods
are expected to expand when R ≥ 2. We compute this
for each year in our sample (Table 1). The ratio is highest
just before the crisis—and then dissipates as banks take on
less risk through the crisis. The diameter of the co-lending
graph becomes marginally smaller as the network shrinks
over time. This framework may be extended to other met-
rics of systemic risk to develop a systemic risk management
system for regulators.

2.2 Drill-Down into Individual Entities
In this section we describe additional views that Midas

provides centered around individual entities. For example,
once a company such as Citigroup Inc. has been identified
as a critical hub for the financial system, a regulator may
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